精英家教网 > 初中数学 > 题目详情
12.如图,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G.
(1)求证:△ACE≌△CBD;
(2)求∠CGE的度数.

分析 (1)先判断出△ABC是等边三角形,根据等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BD,然后利用“边角边”证明即可;
(2)连接AC,易知△ABC是等边三角形,由探究可知△ACE和△CBD全等,根据全等三角形对应角相等可得∠E=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.

解答 解:(1)∵AB=AC,∠ABC=60°,
∴△ABC是等边三角形,
∴BC=AC,∠ACB=∠ABC,
∵BE=AD,
∴BE+BC=AD+AB,
即CE=BD,
在△ACE和△CBD中,
$\left\{\begin{array}{l}{CE=BD}\\{∠ACB=∠ABC}\\{BC=AC}\end{array}\right.$,
∴△ACE≌△CBD(SAS);

(2)如图,连接AC,易知△ABC是等边三角形,
由(1)可知△ACE≌△CBD,
∴∠E=∠D,
∵∠BAE=∠DAG,
∴∠E+∠BAE=∠D+∠DAG,
∴∠CGE=∠ABC,
∵∠ABC=60°,
∴∠CGE=60°.

点评 本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质,熟记性质并确定出三角形全等的条件是解题的关键,(2)作辅助线构造出探究的条件是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在△ABC中,∠ACB=90°,AC=8,BC=6,O为AC上一点,OC=3,以O为圆心,OC为半径作圆.
(1)如图①,求证:AB是⊙O的切线;
(2)如图②,若⊙O与AB交于点D,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如果一个多边形的内角和等于720度,那么这个多边形的边数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知∠α=30°,∠α的余角为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在数学活动中,我们已经学习了四点共圆的条件:如果一个四边形对角互补,那么这个四边形的四个顶点在同一个圆上,简称“四点共圆”.如图,已知四边形ABCD,AD=4,CD=3,AC=5,cos∠BCA=sin∠BAC=$\frac{1}{2}$,求∠BDC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S2=8.5,S2=21.7,S2=15,S2=17.2,则四个班体考成绩最稳定的是(  )
A.甲班B.乙班C.丙班D.丁班

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=$\frac{3x+1}{x}$并作了三个推测:
(1)当x>0时,y的值随着x的增大越来越小;
(2)y的值有可能等于3;
(3)当x>0时,y的值随着x的增大越来越接近于3.
则推测正确的是(  )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.设xi(i=1,2,3,…,n)为任意代数式,我们规定:y=max{x1,x2,…,xn}表示x1,x2,…,xn中的最大值,如y=max{1,2}=2.
(1)求y=max{x,3};
(2)借助函数图象,解不等式max{x+1,$\frac{1}{x}$}≥2;
(3)若y=max{|1-x|,$\frac{1}{2}$x+a,x2-4x+3}的最小值为1,求实数a的值.

查看答案和解析>>

同步练习册答案