【题目】如图,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且∠PAE=∠E,PE交CD于点F.
(1)求证:PC=PE;
(2)求∠CPE的度数.
【答案】(1)见解析;(2)90°
【解析】
(1)先证出△ADP≌△CDP,得PA=PC,由于PA=PE,得PC=PE;
(2)由△ADP≌△CDP,得∠DAP=∠DCP,由∠DAP=∠E,得∠DCP=∠E,最后∠CPE=∠EDF=90°得到结论.
(1)证明:在正方形ABCD中,AD=DC,∠ADP=∠CDP=45°
在△ADP和△CDP中
∴△ADP≌△CDP(SAS)
∴PA=PC
∵∠PAE=∠E
∴PA=PE
∴PC=PE
(2)解: 在正方形ABCD中,∠ADC=90°
∴∠EDF=90°
由(1)知,△ADP≌△CDP
∴∠DAP=∠DCP
∵∠DAP=∠E
∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等)
∴180°-∠PFC-∠PCF=180°-∠DFE-∠E
即∠CPE=∠EDF=90°
科目:初中数学 来源: 题型:
【题目】将四张边长各不相同的正方形纸片按如图方式放入矩形内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为.若知道的值,则不需测量就能知道周长的正方形的标号为( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=______°,∠DEC=______°;点D从B向C运动时,∠BDA逐渐变______(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元∕件.试销阶段发现:当销售价为25元∕件时,每天的销售量是250件,销售价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式.
(2)求销售单价为多少元时,该文具每天的销售利润最大?
(3)在保证销售量尽可能大的前提下,该商场想获得每天2000元的利润,应该将销售价定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:(1)写出△ABC中点A、点C坐标;(2)画出△ABC绕点A管好逆时针旋转90°后的△AB'C';(3)在(2)的条件下,求点C旋转到C'所经过的路线长。(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,一次函数y=-2x+1,与反比例函数的图象有两个交点A点、B点,过点A作AE⊥x轴于点E,点E坐标为(-1,0),过点B作BD⊥y轴于点D,直线AB交y轴于点C.
(1)求k的值;
(2)求tan∠CBD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的平面直角坐标系中,是边长为的等边三角形,作与关于点成中心对称,再作与关于点成中心对称,如此作下去,则.(是正整数)的顶点的坐标是___________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y轴上,点 C(m,b)是第四象限内一点,且满足,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.
(1)求C点坐标;
(2)如图2,连接DE,若DEAC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;
(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分 ∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,的大小是否发生变化,若不变,求出其值;若变化,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com