精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE=
1
4
BC=1.
(1)求证:CE=CF;
(2)若G在AD上,连接GC,且∠GCE=45°,求∠GCF的度数;
(3)在(2)的条件下,求GC的长度.
(1)证明:∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠B=∠ADC=∠CDF=90°,
在△EBC和△FDC中
BE=DF
∠B=∠CDF
BC=CD

∴△EBC≌△FDC(SAS),
∴CE=CF.

(2)∵△EBC≌△FDC,
∴∠BCE=∠DCF,
∵∠BCD=90°,∠GCE=45°,
∴∠BCE+∠GCD=90°-45°=45°,
∴∠GCD+∠DCF=45°,
∴∠GCF=45°.

(3)连接EG,
∠ECG=∠GCF=45°,
在△ECG和△FCG中
EC=CF
∠ECG=∠FCG
CG=CG

∴△ECG≌△FCG,
∴EG=GF,
∵DF=BE=
1
4
BC=1,
∴BC=CD=AD=AB=4,
设AG=x,则DG=4-x,GF=4-x+1=5-x=EG,AE=4-1=3,
在Rt△AEG中,由勾股定理得:32+x2=(5-x)2
解得:x=1.6,
DG=4-1.6=2.4,
在Rt△GCD中,由勾股定理得:GC=
42+2.42
=
4
34
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边BC的延长线上取点M,使CM=AC,AM与CD相交于点N,则∠ANC=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,对角线AC,BD交于点O,∠ACB的平分线CE交BO于点E,过点B作BF⊥CE,垂足为F,交AC于点G,则
BF
CE
=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.
(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;
(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立???写出证明过程;若不成立,请说明理由;
(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G
(1)若AB=8,BF=16,求CE的长;
(2)求证:AE=BE+DG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,点O是AC边上的一动点,过O作直线MNBC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,且
AE
BC
=
6
2
,求∠B的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图案是部分汽车的标志,其中是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

按要求画一个图形:所画图形中同时要有正方形和圆(正方形和圆的个数不限),并且这个图形既是轴对称图形,又是中心对称图形.

查看答案和解析>>

同步练习册答案