分析 (1)根据等边三角形的性质、三角形全等的判定定理证明;
(2)根据全等三角形的性质得到∠BAQ=∠ACP,根据三角形的外角的性质解答;
(3)分∠PQB=90°和∠PBQ=90°两种情况,根据直角三角形的性质计算即可.
解答 (1)证明:∵△ABC是等边三角形,
∴∠ABQ=∠CAP=60°,AB=CA,
∵点P、Q的速度相同,
∴AP=BQ,
在△ABQ和△CAP中,
$\left\{\begin{array}{l}{AB=CA}\\{∠ABQ=∠CAP}\\{AP=BQ}\end{array}\right.$,
∴△ABQ≌△CAP;
(2)解:∠QMC的大小不发生变化,
∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∴∠QMC=∠QAC+∠ACP=∠QAC+∠BAQ=60°;
(3)解:设点P,Q运动x秒时,△PBQ是直角三角形,
则AP=BQ=x,PB=(4-x),
当∠PQB=90°时,
∵∠B=60°,
∴BP=2BQ,即4-x=2x,
解得,x=$\frac{4}{3}$,
当∠PBQ=90°时,
∵∠B=60°,
∴BQ=2BP,即2(4-x)=x,
解得,x=$\frac{8}{3}$,
∴当点P,Q运动$\frac{4}{3}$秒或$\frac{8}{3}$秒时,△PBQ是直角三角形.
点评 本题考查的是全等三角形的判定、直径三角形的性质,掌握等边三角形的性质、灵活运用分情况讨论思想是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 100(1-x)2=81 | B. | 81(1-x)2=100 | C. | 100(1-2x)=81 | D. | 81(1-2x)=100 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x≥$\frac{1}{2}$ | B. | x≥-$\frac{1}{2}$ | C. | x≤$\frac{1}{2}$ | D. | x≤-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 点O是△ABC的三条角平分线的交点 | |
B. | 点O是△DEF的三条中线的交点 | |
C. | 点O是△DEF的三条边的垂直平分线的交点 | |
D. | △DEF一定是锐角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com