【题目】如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)在y轴上是否存在点B,使以点B、A、H、M为顶点的四边形是平行四边形?如果存在,求出B点坐标;如果不存在,请说明理由;
(3)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上有一点P,使得PM+PN最小,请求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,梯形ABCD中,AD∥BC,E是BC的中点,∠BEA=∠DEA ,联结AE、BD相交于点F,BD⊥CD.
(1)求证:AE=CD;
(2)求证:四边形ABED是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)直接写出A′,B′,C′三点的坐标:A′( ),B′( ),C′( )
(3)计算△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示):_____;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为千米/小时,同时一辆出租车比乙城开往甲城,车速为90千米/小时.
(1)设客车行驶时间为(小时),当时,客车与乙城的距离为_______千米(用含的代数式表示);
(2)已知,丙城在甲、乙两城之间,且与甲城相距260千米.
①求客车与出租车相距200千米时客车的行驶时间;(列方程解答)
②已知客车和出租车在甲、乙之间的处相遇时,出租车乘客小李突然接到开会通知,需要立即返回,此时小李有两种返回乙城的方案;
方案一:继续乘坐出租车到丙城,加油后立刻返回乙城,出租车加油的时间忽略不计;
方案二:在处换乘客车返回乙城.
试通过计算,分析小李选择哪种方案能更快到达乙城?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点表示数,点表示数,点表示数,且点在点的左侧,同时、满足,.
(1)由题意:______,______,______;
(2)当点在数轴上运动时,点到、两点距离之和的最小值为______.
(3)动点、分别从点、沿数轴负方向匀速运动同时出发,点的速度是每秒个单位长度,点的速度是每秒2个单位长度,求运动几秒后,?
(4)在数轴上找一点,使点到、、三点的距离之和等于10,请直接写出所有的点对应的数.(不必说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com