精英家教网 > 初中数学 > 题目详情

如图,已知AB=AD,∠B=∠D,则BC=DC.请说明理由.

解:连接BD,
∵AB=AD,
∴∠ABD=∠ADB(在同一三角形中,等边对等角),
又∵∠ABC=∠ADC,
∴∠ABC-∠ABD=∠ADC-∠ADB,
即:∠DBC=∠BDC,
∴BC=DC(在同一三角形中,等角对等角 ).
分析:连接BD,利用等边对等角得到相等的角,然后利用等边对等角得到BC=DC即可.
点评:本题考查了等腰三角形的判定及性质,解题的关键是连接BD构造三角形,并利用等腰三角形的性质及判定进行证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)
∠B=∠D或∠C=∠E或AC=AE

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AD,CD⊥AD,垂足分别为A、D,AD=6,AB=5,CD=3,P是线段AD上的一个动点,设AP=x,DP=y,a=
x2+25
+
y2+9
,则a的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知AB=AD,BC=DC,BD交AC于点O,请分别说明下列判断成立的理由:
(1)△ABC≌△ADC;
(2)AC是线段BD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AD,点E、F分别是CD、BC的中点,BF=CE,求证:AE=AF.

查看答案和解析>>

同步练习册答案