精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是(  )

A. 8个 B. 10个 C. 12个 D. 13个

【答案】D

【解析】据等腰直角三角形的判定定理即可得到结论.

ABAC,点DBC的中点,ADBC

AB=ACAD=BDAD=CD

∴△ABC,△ADB,△ADC是等腰直角三角形,

同理BDE,△ADE,△ADF,△CDF是等腰直角三角形,

DE=AEDF=AFAE=AF,∠EAF=90°,

四边形AEDF是正方形,

∴△AOE,△AOF,△DOE,△DOF,△AEF,△EFD是等腰直角三角形,

图中等腰直角三角形的个数是13个.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:2sin45°﹣( 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为(
A.2
B.
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:

(1)a= , b= , 且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y= (k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是( )

A.
B.
C.16
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=5,BD=13,Rt△EFG的直角边GE在CB的延长线上,E点与矩的B点重,∠FGE=90°,FG=3.将矩形ABCD固定,把Rt△EFG沿着射线BC方向运动,当点F恰好经过BD时,将△EFG绕点F逆时针旋转α°(0°<α°<90°),记旋转中的△EFG为△E′F′G′,在旋转过程中,设直线E′G′与直线BC交于N,与直线BD交于M点,当△BMN为以MN为底边的等腰三角形时,FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是1019,则△CDE的面积为_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两块全等的三角板如图①摆放,其中∠A1CB1=ACB=90°,A1=A=30°.

(1)将图①中的A1B1C顺时针旋转45°得图②,点P1A1CAB的交点,点QA1B1BC的交点,求证:CP1=CQ;

(2)在图②中,若AP1=2,则CQ等于多少?

查看答案和解析>>

同步练习册答案