精英家教网 > 初中数学 > 题目详情

已知二次函数数学公式与x轴交于A、B两点,A在B点的左边,与y轴交于C点,点P在第一象限的抛物线上,且在对称轴右边.S△PAC=4,求P点坐标.

解:∵二次函数的解析式为,且该函数图象与x轴交于A、B两点,A在B点的左边,与y轴交于C点,
∴当y=0时,=0,
解得x1=1,x2=3,即A(1,0),B(3,0).
当x=0时,y=2,即C(0,2).
∴OC=2,OA=1,OB=3,AB=2.
如图过点P作PE⊥x轴于点E.设P点的坐标(x,)(x>0).
则S△PAC=S梯形OCPE-S△OAC-S△PAE=+2)x-×1×2-×(x-1)y=4.即x2-2x-12=0,
解得x=-2(舍去),或x=6.
当x=6时,y=8.
∴P点坐标是(6,8).
答:P点坐标是(6,8).
分析:如图,过点P作PE⊥x轴于点E.将△PAC的面积转化为S△PAC=S梯形OCPE-S△OAC-S△PAE
点评:本题考查了抛物线与x轴的交点,二次函数的性质.解答该题时,注意转化思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源:101网校同步练习 初三数学 华东师大(新课标2001/3年初审) 华东师大版 题型:044

已知二次函数与x轴交于A(-2,0),B(4,0)且过点C(-1,5),求此抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图18-1所示,已知二次函数与x轴分别交于点A(2,0)、
B(4,0),与y轴交于点C(0,-8t)(t>0)
【小题1】求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);
【小题2】如图18-1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;
【小题3】如图18-2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;
【小题4】将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江慈溪育才中学九年级第一学期第二次月考数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B.

(1)求:二次函数的解析式及B点坐标;

(2)若将抛物线为对称轴向右翻折后,得到一个新的二次函数,已知二次函数与x轴交于两点,其中右边的交点为C点.点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D.点E、点F也随之运动);

①当点E在二次函数y1的图像上时,求OP的长.

②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,同时线段OC上另一个点Q从C点出发向O点做匀速运动,速度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AC交于G点,以QG为边在QG的左侧作正方形QGMN(当Q点运动时,点G、点M、点N也随之运动),若P点运动t秒时,两个正方形分别有一条边恰好落在同一条直线上(正方形在x轴上的边除外),求此刻t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年河北石家庄初中毕业班教学质量检测数学试卷(解析版) 题型:解答题

如图18-1所示,已知二次函数与x轴分别交于点A(2,0)、

B(4,0),与y轴交于点C(0,-8t)(t>0)

1.求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);

2.如图18-1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;

3.如图18-2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;

4.将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案