精英家教网 > 初中数学 > 题目详情
如图①,将矩形ABCD沿着对角线AC分割,得到△ABC和△ACD,将△ACD绕点A按逆时针方向旋转α度,使D,A,B三点在同一直线上,得到图②,再把图②中的△ADE沿着AB方向平移s格,使点D与点A重合,得到图③,设EF与AC相交于点G.
请解答以下问题:
(1)上述过程中,α=______度,s=______格;
(2)在图③中,除了△ABC∽△EAF以外,还能找出对相似三角形;
(3)请写一对你在图③中找出的相似三角形,并加以证明.
【答案】分析:(1)根据已知及图形分析容易得出;
(2)根据相似三角形的判定即可找到存在的相似三角形;
(3)从(2)中找出一对,根据相似三角形的判定方法,结合旋转、平移的性质,进行证明.
解答:解:(1)根据图形分析容易得出:α=90°,S=3.(4分)

(2)△AEF∽△GAF;△AEF∽△ABC;△ABC∽△GAF;△GAE∽△ABC;△GAE∽△AGF共5对.(6分)

(3)△AEF∽△GAF.(7分)
证明:∵在图①中,四边形ABCD是矩形
∴∠ACD=∠CAB
即在图③中,∠AEF=∠GAF(8分)
又∵∠AFE=∠GFA(9分)
∴△AEF∽△GAF(10分)
点评:本题主要考查相似三角形的判定方法及平移、旋转的性质等的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其中两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,在△BHE、△GFC上都种花,在矩形EFGH上兴建喷泉.当FG长为多少米时,种草的面积与种花的面积相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昌平区二模)(1)如图1,以AC为斜边的Rt△ABC和矩形HEFG摆放在直线l上(点B、C、E、F在直线l上),已知BC=EF=1,AB=HE=2.△ABC沿着直线l向右平移,设CE=x,△ABC与矩形HEFG重叠部分的面积为y(y≠0).当x=
35
时,求出y的值;
(2)在(1)的条件下,如图2,将Rt△ABC绕AC的中点旋转180°后与Rt△ABC形成一个新的矩形ABCD,当点C在点E的左侧,且x=2时,将矩形ABCD绕着点C顺时针旋转α角,将矩形HEFG绕着点E逆时针旋转相同的角度.若旋转到顶点D、H重合时,连接AG,求点D到AG的距离;
(3)在(2)的条件下,如图3,当α=45°时,设AD与GH交于点M,CD与HE交于点N,求证:四边形MHND为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一条直线能够将一个封闭图形的周长和面积同时平分,那么就把这条直线称作这个封闭图形的二分线.

(1)请在图1的三个图形中,分别作一条二分线.
(2)请你在图2中用尺规作图法作一条直线 l,使得它既是矩形的二分线,又是圆的二分线.(保留作图痕迹,不写画法).
(3)如图3,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在过AB边上的点P的二分线?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年北京市昌平区中考数学二模试卷(解析版) 题型:解答题

(1)如图1,以AC为斜边的Rt△ABC和矩形HEFG摆放在直线l上(点B、C、E、F在直线l上),已知BC=EF=1,AB=HE=2.△ABC沿着直线l向右平移,设CE=x,△ABC与矩形HEFG重叠部分的面积为y(y≠0).当x=时,求出y的值;
(2)在(1)的条件下,如图2,将Rt△ABC绕AC的中点旋转180°后与Rt△ABC形成一个新的矩形ABCD,当点C在点E的左侧,且x=2时,将矩形ABCD绕着点C顺时针旋转α角,将矩形HEFG绕着点E逆时针旋转相同的角度.若旋转到顶点D、H重合时,连接AG,求点D到AG的距离;
(3)在(2)的条件下,如图3,当α=45°时,设AD与GH交于点M,CD与HE交于点N,求证:四边形MHND为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图2,将矩形ABCD沿对角线BD对折,使点C落在C′处,BC′交AD于F,下列不

成立的是                                                               (    )

  A.AF=C′F             B.BF=DF  

  C.∠BDA=∠ADC′      D.∠ABC′=∠ADC′

查看答案和解析>>

同步练习册答案