如图,一次函数 与反比例函数的图象交于点 和,与轴交于点.(1) , ;
(2)根据函数图象可知,当 时,的取值范围是 ;
(3)过点作轴于点,点是反比例函数在第一象限的图象上一点,设直线与线段交于点,当时,求点的坐标.
见解析
解析试题分析:(1)一次函数 与反比例函数的图象交于点 和把分别代入和,得到:,16,所以,,再把代入,得到:m=4,所以
(2)根据函数图象可知,当 时,一次函数图象在反比例函数图象的上方,这时的取值范围是-8<x<0或x>4.
(3)由(1)知,,m=4,点C的坐标是(0,2)点A的坐标是(4,4).所以CO=2,AD=OD=4.可得,
,即OD·DE=4, DE=2.,得到点E的坐标为(4,2).又点E在直线OP上,求得直线OP的解析式是.所以求出直线OP与的图象在第一象限内的交点P的坐标即可.
试题解析:(1),16;,
(2)根据函数图象可知,当 时,的取值范围是-8<x<0或x>4;
(3)由(1)知,
∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).
∴CO=2,AD=OD=4.
∴
∵
∴
即OD·DE=4,∴DE=2.
∴点E的坐标为(4,2).
又点E在直线OP上,∴直线OP的解析式是.
∴直线OP与的图象在第一象限内的交点P的坐标为().
考点:1.待定系数法求解析式.2.函数和不等式的关系.3.函数与方程组的关系.
科目:初中数学 来源: 题型:解答题
定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:的图象向左平移2个单位,再向下平移1个单位得到的图象,则是y与x的“反比例平移函数”.
(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”的图象经过B、E两点.则这个“反比例平移函数”的表达式为 ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.
(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围是 ;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、A(0,3),反比例函数的图象经过点C.
(1)求C点坐标和反比例函数的解析式;(6分)
(2)将等腰梯形ABCD向上平移个单位后,使点B恰好落在双曲线上,求的值.(4分)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,反比例函数的图象与一次函数的图象交于点M,N,已点M的坐标为(1,3),点N的纵坐标为-1.
(1)求一次函数和反比例函数的解析式;
(2)当y1≥3时,求x的取值范围;
(3)求使y1>y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).
(1)求m的值;
(2)求正比例函数y=kx的解析式;
(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:计算题
为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲无放回摸两次,每次摸出一个球;再把甲摸出的两个球同时放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)(4分)运用列表或画树状图求甲得1分的概率;
(2)(4分)这个游戏是否公平?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com