【题目】如图,已知抛物线与轴交于点,两点(点在点的右侧),与轴交于点,点是抛物线上的一个动点,过作轴,垂足为,交直线于点.
(1)直接写出,,三点的坐标;
(2)若以,,,为顶点的四边形是平行四边形,求此时点的坐标;
(3)当点位于直线下方的抛物线上时,过点作于点,设点的横坐标为,的面积为,求与的函数关系式,并求的最大值.
【答案】(1)、、;(2)点坐标为或或;(3),
【解析】
(1)根据抛物线与坐标轴的交点可得A,B,C三点的坐标;
(2)求出直线解析式,根据平行四边形的性质可求解;
(3)设点P的坐标为,则可用含m的代数式表示点Q的坐标;可求得BQ的长,证明,得出,可用含m的代数式表示QE和PE的长度,根据面积计算公式和抛物线顶点式方程可求解.
解:(1)当时, 即
当时,有:
解得 即、
故:、、
(2)设直线解析式为,
∵,,
∴代入可得,解得,∴直线解析式为,
设坐标为,则点坐标为,点坐标为,
由题意可知,,当、、、为顶点的四边形为平行四边形时,则有
,
即,或
解得,,,
综上可知点坐标为或 或;
(3)点坐标为,则点坐标为,
,在中,;
又
∵,,
∴,且,
∴,
∴
∴
∴
令,
∵在直线下方
∴当时,有最小值,点坐标为,此时取最大值为
科目:初中数学 来源: 题型:
【题目】如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.
(1)求证:CE是⊙O的切线.
(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.
①试探究线段CF与CD之间满足的数量关系;
②若CD=4,BD=2,求线段FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若⊙O半径r=3,DE=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.
①求证: AD=BE:
②求∠AFB的度数.
(2)如图2, △ABC和△CDE均为等腰直角三角形,∠ABC= ∠DEC=90°,直线AD和直线BE交于点F.
①求证: AD= BE:;
②若AB=BC=3, DE=EC= 2,将△CDE绕着点C在平面内旋转,当点D落在线段BC上时,在图3中画出图形,并求BF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下统计图:
(1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为___________度
(2)请补充完整下面的成绩统计分析表:
平均数 | 方差 | 众数 | 中位数 | 优秀率 | |
甲组 | 7 | 1.8 | 7 | 7 | |
乙组 | 1.36 |
(3)你认为那组成绩较好?从以上信息中写出两条支持你的选择
(4)从甲、乙两组得9分的学生中抽取两人参加市级比赛,求这两人来自不同组的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为四个不同的等级,绘制成不完整统计图如下图,请根据图中的信息,解答下列问题;
(1)求样本容量;
(2)补全条形图,并填空: ;
(3)若全市有5000人参加了本次测试,估计本次测试成绩为级的人数为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=10,AD=4,点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为( )
A.1B.C.4D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.
(1)求实际每天挖掘多少米?
(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,点C为 的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.
(1)求证:AD与⊙O相切;
(2)若CE=4,求弦AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com