精英家教网 > 初中数学 > 题目详情

平面上有个点(为自然数),其中任何三点不在同一直线上。证明:一定存在三点,以这三点作为顶点的三角形中至少有一个内角不大于

证明:如图,在这个点中,必存在这样的两点,使其它各点均在这两点所在直线同侧,设这两个点为,其它各点按逆时针方向设为、……

⑴当时,连

中,

 

中必有一个角不大于

⑵当时,

则在这个角中,必有一个角不大于

,则即为所求三角形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在精英家教网AB边上,记为D点,AE为折痕,E在y轴上.
(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA、OC是方程
2
x
=
9-x
10
的两个根(OA>OC),在AB边上取一点D,将纸片沿CD翻折,使点B恰好落在OA边上的点E处.
(1)求OA、OC的长;
(2)求D、E两点的坐标;
(3)若线段CE上有一动点P自C点沿CE方向向E点匀速运动(点P运动到点E后停止运动),运动的速度为每秒1个单位长度,设运动的时间为t秒,过P点作ED的平行线交CD于点M.是否存在这样的t 值,使以C、E、M为顶点的三角形为等腰三角形?若存在,请直接写出t值及相应的时刻点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。
(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

查看答案和解析>>

科目:初中数学 来源:2012届福建省泉州三中九年级下学期第一次质量检查数学卷 题型:解答题

(14分)如图一,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,点轴的正半轴上,

(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;
(2)如图二,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.

查看答案和解析>>

同步练习册答案