精英家教网 > 初中数学 > 题目详情

【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.

【答案】
(1)

证明:∵四边形ABCD是矩形,

∴∠D=∠DAE=90°,

由折叠的性质得,AE=AD,∠AEF=∠D=90°,

∴∠D=∠DAE=∠AEF=90°,

∴四边形AEFD是矩形,

∵AE=AD,

∴矩形AEFD是正方形


(2)

解:NF=ND′,

理由:连接HN,

由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,

∵四边形AEFD是正方形,

∴∠EFD=90°,

∵∠AD′H=90°,

∴∠HD′N=90°,

在Rt△HNF与Rt△HND′中,

∴Rt△HNF≌Rt△HND′,

∴NF=ND′


(3)

解:∵四边形AEFD是正方形,

∴AE=EF=AD=8cm,

由折叠得,AD′=AD=8cm,

设NF=xcm,则ND′=xcm,

在Rt△AEN中,

∵AN2=AE2+EN2

∴(8+x)2=82+(8﹣x)2

解得:x=2,

∴AN=8+x=10cm,EN=6cm,

∴EN:AE:AN=3:4:5,

∴△AEN是(3,4,5)型三角形


(4)

解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,

∵CF∥AE,

∴△CFN∽△AEN,

∵EN:AE:AN=3:4:5,

∴FN:CF:CN=3:4:5,

∴△MFN是(3,4,5)型三角形;

同理,△MD′H,△MDA是(3,4,5)型三角形.


【解析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对相似三角形的应用的理解,了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察图,回答下列问题:

(1)甲、乙两图分别能折成什么几何体?简述它们的特征;

(2)设几何体的面数为F,顶点数为V棱数为E,请计算(1)中两个几何体的FVE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.

(1)若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:(﹣2)3+( 2 sin45°
(2)分解因式:(y+2x)2﹣(x+2y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,B=D=90°A=60°AB=4CD=2.求:四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题.

程大位明代商人珠算发明家被称为珠算之父、卷尺之父.少年时读书极为广博对数学颇感兴趣60岁时完成其杰作《直指算法统宗》简称《算法统宗》).

在《算法统宗》里记载了一道趣题一百馒头一百僧大僧三个更无争小僧三人分一个大小和尚各几丁意思是100个和尚分100个馒头如果大和尚1人分3小和尚3人分1正好分完.试问大、小和尚各多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD=CDABD=ACD=90°,点EF分别在ABAC上,若ED平分∠BEF

1)求证:FD平分∠EFC

2)若EF=4AF=6AE=5,求BECF的和的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.

(1)求港口A到海岛B的距离;

(2)B岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数y= 位于第一象限的图象上,则k的值为(
A.9
B.9
C.3
D.3

查看答案和解析>>

同步练习册答案