【题目】如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,.请连结线段CB,求四边形ABCD各内角的度数.
【答案】55°,70°,125°,110°
【解析】试题分析:连结BC,根据圆周角定理得∠ACB=90°,则利用互余可计算出∠B=70°,再根据圆内接四边形的性质计算出∠D=180°﹣∠B=110°,接着根据圆周角定理和三角形内角和定理,由弧AD=弧CD得到∠DAC=∠DCA=35°,然后计算∠DAB=∠DAC+∠BAC=55°,∠DCB=∠DCA+∠ACB=125°.
试题解析:解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,∵∠BAC=20°,∴∠B=70°,∵四边形ABCD是圆O的内接四边形,∴∠D=180°﹣∠B=110°,∵弧AD=弧CD,∴∠DAC=∠DCA=(180°-110°)=35°,∴∠DAB=∠DAC+∠BAC=55°,∠DCB=∠DCA+∠ACB=125°,即四边形ABCD各内角的度数分别为55°,70°,125°,110°.
科目:初中数学 来源: 题型:
【题目】如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某开发区计划在一块四边形的空地ABCD上种植草坪,已知∠A=90°,AB=4m,BC=12m,CD=13m,DA=3m,种植每平方米草皮的预算费用为300元,若第一年对草坪的保养费用占种植草皮总预算的4%,以后每年的保养费用都将在前一年的基础上递增2%,求第三年的草坪保养费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
平均数分 | 中位数分 | 众数分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( )
A. 4 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x,y的方程组
(1)若a=2,请直接写出此时方程组的解;
(2)若方程组的解满足x+y=6,求a的值;
(3)若方程组的解x,y的值都为非负数,求2x-y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境与之对应排序.正确的顺序是( )
①篮球运动员投篮时,投出去的篮球的高度与时间的关系;
②去超市购买同一单价的水果,所付费用与水果数量的关系;
③李老师使用的是一种含月租的手机计费方式,则他每月所付话费与通话时间的关系;
④周末,小明从家到图书馆,看了一段时间书后,按原速度原路返回,小明离家的距离与时间的关系
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀将其平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②)
自主探索:
(1)仔细观察图形,完成下列问题
①图②中的阴影部分的面积为_____;
②观察图②,请你写出(a+b)2、(a-b)2、ab之间的等量关系是_____;
知识运用:
(2)若x-y=5,xy=,根据(1)中的结论,求(x+y)2的值;
知识延伸
(3)根据你探索发现的结论,完成下列问题:
设A=,B=x+2y-3
计算(A-B)2-(A+B)2的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀,重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 24 | 51 | 76 | b | 201 | 250 |
摸到黑棋的频率(精确到0.001) | 0.240 | a | 0.253 | 0.248 | 0.251 | 0.250 |
(1)填空:a= ,b= ;
(2)在图中,画出摸到黑棋的折线统计图;
(3)随机摸一次,估计摸到黑棋的概率.(精确到0.01)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com