精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,点E是AD上任意一点,则有(  )

A.△ABE的周长+△CDE的周长=△BCE的周长
B.△ABE的面积+△CDE的面积=△BCE的面积
C.△ABE∽△DEC
D.△ABE∽△EBC

B

解析考点:相似三角形的判定;矩形的性质.
分析:A选项,可分别写出三个三角形的边长,然后根据矩形的对边相等,来判断结论是否正确;
B选项,思路同A,分别表示出三个三角形的面积,然后结合矩形的性质进行判断;
C、D选项,显然若这两个结论成立,必须有∠BEC=90°作前提条件,因此C、D是错误的.解答:解:A、△ABE的周长+△CDE的周长=AB+AE+BE+DE+CD+CE=AD+BE+CE+2AB=BC+BE+CE+2AB=△BEC的周长+2AB,显然A的结论不成立;
B、S△ABE+S△CDE=(AE+DE)×AB= AD×AB=S△BCE,故B正确;
C、D若成立,则∠BEC必须满足∠BEC=90°,显然∠BEC不一定是直角,故C、D错误;
故选B.
点评:此题主要考查了矩形的性质、三角形周长和面积的计算方法、相似三角形的判定和性质等知识.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案