精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
分析:(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;
(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.
②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.
解答:解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8).
将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得
16a+4b=8
64a+8b=0

解得a=-
1
2
,b=4.
故抛物线的解析式为:y=-
1
2
x2+4x;

(2)①在Rt△APE和Rt△ABC中,tan∠PAE=
PE
AP
=
BC
AB
,即
PE
AP
=
4
8

∴PE=
1
2
AP=
1
2
t.PB=8-t.
∴点E的坐标为(4+
1
2
t,8-t).
∴点G的纵坐标为:-
1
2
(4+
1
2
t)2+4(4+
1
2
t)=-
1
8
t2+8.
∴EG=-
1
8
t2+8-(8-t)=-
1
8
t2+t.
∵-
1
8
<0,∴当t=4时,线段EG最长为2.
②共有三个时刻.
精英家教网(①)当EQ=QC时,
因为Q(8,t),E(4+
1
2
t,8-t),QC=t,
所以根据两点间距离公式,得:
1
2
t-4)2+(8-2t)2=t2
整理得13t2-144t+320=0,
解得t=
40
13
或t=
104
13
=8(此时E、C重合,不能构成三角形,舍去).
(②)当EC=CQ时,
因为E(4+
1
2
t,8-t),C(8,0),QC=t,
所以根据两点间距离公式,得:
(4+
1
2
t-8)2+(8-t)2=t2
整理得t2-80t+320=0,t=40-16
5
,t=40+16
5
>8(此时Q不在矩形的边上,舍去).
(③)当EQ=EC时,
因为Q(8,t),E(4+
1
2
t,8-t),C(8,0),
所以根据两点间距离公式,得:(
1
2
t-4)2+(8-2t)2=(4+
1
2
t-8)2+(8-t)2
解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=
16
3

于是t1=
16
3
,t2=
40
13
,t3=40-16
5
点评:抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案