精英家教网 > 初中数学 > 题目详情

【题目】在一个不透明的口袋里装有分别标有数字﹣3、﹣102的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.

(1)从中任取一球,求抽取的数字为正数的概率;

(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax22ax+a+30有实数根的概率;

(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(xy)所有可能出现的结果,并求点(xy)落在第二象限内的概率.

【答案】1;(2;(3

【解析】

试题(1)四个数字中正数有一个,求出所求概率即可;

2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;

3)列表得出所有等可能的情况数,找出点(xy)落在第二象限内的情况数,即可求出所求的概率.

试题解析:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=

2方程ax2﹣2ax+a+3=0有实数根,

∴△=4a2﹣4aa+3=﹣12a≥0,且a≠0

解得:a0

则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为

3)列表如下:


﹣3

﹣1

0

2

﹣3

﹣﹣﹣

﹣1﹣3

0﹣3

2﹣3

﹣1

﹣3﹣1

﹣﹣﹣

0﹣1

2﹣1

0

﹣30

﹣10

﹣﹣﹣

20

2

﹣32

﹣12

02

﹣﹣﹣

所有等可能的情况有12种,其中点(xy)落在第二象限内的情况有2种,

P==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?

小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:

(1)画出几何图形,明确条件和探究对象;

如图2,在RtABC中,∠C90°ACBC6cmD是线段AB上一动点,射线DEBC于点E,∠EDF_____°,射线DF与射线AC交于点F.设BE两点间的距离为xcmEF两点间的距离为ycm

(2)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

____

4.5

6

(说明:补全表格时相关数据保留一位小数)

(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tanABD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

(1)如图①,在ABC中,∠A=120°,AB=AC=5,则ABC的外接圆半径R的值为

问题探究

(2)如图②O的半径为13,弦AB=24,MAB的中点,P是⊙O上一动点,求PM的最大值.

问题解决

(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在线段ABAC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EFFP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).

图① 图② 图③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,∠ACB与∠CAB的平分线交于点PPDAB于点D,若△APC△APD的周长差为,四边形BCPD的周长为12+,则BC等于______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°

1)求证:ABBD

2)求证铁塔AB的高度.(结果精确到0.1米,其中1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点BC,点B的坐标为(60),∠ABC60°.

1)若点P是⊙A上的动点,则P到直线BC的最小距离是   

2)若点A从原点O出发,以1个单位/秒的速度沿着线路OBBCCO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t

①求⊙A在整个运动过程中与坐标轴相切时t的取值;

②求⊙A在整个运动过程中所扫过的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yax+b与反比例函数y的图象交于AB两点,点A坐标为(m2),点B坐标为(﹣4n),OAx轴正半轴夹角的正切值为,直线ABy轴于点C,过Cy轴的垂线,交反比例函数图象于点D,连接ODBD

1)求一次函数与反比例函数的解析式;

2)求四边形OCBD的面积.

查看答案和解析>>

同步练习册答案