精英家教网 > 初中数学 > 题目详情
4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=40°.

分析 首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.

解答 解:∵AB=AC,∠BAC=100°,
∴∠B=∠C=(180°-100°)÷2=40°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠BAE=∠B=40°,
故答案为40°.

点评 本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.下列方程中,是二元一次方程的是(  )
A.xy-2x=1B.3x+1=yC.y=9D.6x+y2=7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB为⊙O的直径,AT是⊙O的切线,TB交⊙O于D,TO交⊙OFC,TO的延长线交⊙O于E,若BD=TD,求tan∠BDE值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:$\sqrt{12}$+(π-2017)0+($\frac{1}{2}$)-1-4cos30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形ABCD是平行四边形.
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:
①作∠BAD的平分线,交CD于E,交BC的延长线于F;②连接BE;
(2)在(1)作出图形中,若∠F=45°,AB=8,DE=5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.
(1)求证:△AOB≌△AOD;
(2)试判定四边形ABOD是什么四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:(2$\sqrt{2}$)2+2cos45?-($\frac{1}{2}$)-1-|1-$\sqrt{2}$|-(π-3.14)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点N是反比例函数y=$\frac{6}{x}$(x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=-2x+4于点M,则△OMN面积的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A,B的对应点分别是点D,E.
(1)请用圆规和直尺作出旋转后的三角形DCE(保留作图痕迹,不写作法和证明);
(2)求点A与点D之间的距离.

查看答案和解析>>

同步练习册答案