精英家教网 > 初中数学 > 题目详情
17.如图,将一张正方形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开后得到的图案是(  )
A.B.C.D.

分析 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.

解答 解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论.
故选:B.

点评 本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.

练习册系列答案
相关习题

科目:初中数学 来源:2016~2017学年安徽省芜湖市九年级下学期第一次模拟考试数学试卷(解析版) 题型:选择题

如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则(  )

A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,直角坐标系中的△ABC的三个顶点分别为A(-5,0),B(-1,-4),C(-1,0).
(1)直接写出AB的中点M关于y轴的对称点M′的坐标;
(2)画出△ABC关于点O的中心对称图形△A′B′C′;
(3)以点C′为旋转中心,将点M′逆时针旋转,旋转角为α(0°<α<180°),直接写出使点M′落在△A′B′C′内部时a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在Rt△ABC中,∠A=90°,AB=AC=4,将△ABC折叠,使点B落在边AC上的D处,折痕为PQ.
(1)当点D与点A重合时,折痕PQ的长为2;
(2)设AD=x,AP=y.
①求y与x的函数表达式,并写出自变量x的取值范围;
②当x取何值时,重叠部分为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在正方形ABCD中,点P在射线AB上,连结PC,PD,M,N分别为AB,PC中点,连结MN交PD于点Q.
(1)如图1,当点P与点B重合时,求∠QMB的度数;
(2)当点P在线段AB的延长线上时.
①依题意补全图2
②小聪通过观察、实验、提出猜想:在点P运动过程中,始终有QP=QM.
小聪把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1延长BA到点E,使AE=PB.要证QP=QM,只需证△PDA≌△ECB.
想法2:取PD中点E,连结NE,EA.要证QP=QM只需证四边形NEAM是平行四边形.
想 法3:过N作NE∥CB交PB于点E,要证QP=QM,只要证明△NEM∽△DAP.

请你参考上面的想法,帮助小聪证明QP=QM.(一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.一个盒子中装有2个白球,5个红球,从这个盒子中随机摸出一个球,是红球的概率为$\frac{5}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB为⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED、EB,切点分别为点D,B,连接AD并延长交BE延长线于点C,连接OE.
(1)试判断OE与AC的关系,并说明理由;
(2)填空:
①当∠BAC=45°时,四边形ODEB是正方形.
②当∠BAC=30°时,$\frac{AD}{DE}$的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为(  )
A.30°B.32°C.42°D.58°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪.如图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°
(1)求B,C的距离.  
(2)通过计算,判断此轿车是否超速.(tan31°≈0.6,tan50°≈1.2,结果精确到1m)

查看答案和解析>>

同步练习册答案