精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.
(1)求证:DF=FE;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下,求四边形ABED的面积.
【答案】分析:(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;
(2)在直角三角形ADC中利用勾股定理求解即可;
(3)求四边形ABED的面积,可分解为求梯形ABMD与三角形DME的面积,然后求两面积之和即可.
解答:(1)证明:延长DC交BE于点M,
∵BE∥AC,AB∥DC,
∴四边形ABMC是平行四边形,
∴CM=AB=DC,C为DM的中点,BE∥AC,
∴CF为△DME的中位线,
∴DF=FE;

(2)解:由(1)得CF是△DME的中位线,故ME=2CF,
又∵AC=2CF,四边形ABMC是平行四边形,
∴BE=2BM=2ME=2AC,
又∵AC⊥DC,
∴在Rt△ADC中,AC=AD•sin∠ADC=
∴BE=

(3)解:可将四边形ABED的面积分为两部分,梯形ABMD和△DME,
在Rt△ADC中:DC==
∵CF是△DME的中位线,
∴CM=DC=
∵四边形ABMC是平行四边形,
∴AB=MC=,BM=AC=
∴梯形ABMD面积为:=
由AC⊥DC和BE∥AC可证得△DME是直角三角形,
其面积为:
∴四边形ABED的面积为+
点评:本题结合三角形的有关知识综合考查了平行四边形的性质,解题的关键是理解中位线的定义,会用勾股定理求解直角三角形,会计算一些简单的四边形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案