精英家教网 > 初中数学 > 题目详情
31、如图,△ABC是等边三角形,AD是△ABC的角平分线,延长AC到E,使得CE=CD.
求证:AD=ED.
分析:先根据等边三角形各内角的度数及角平分线的性质求出∠BAD=∠DAC=30°,再根据等边对等角及三角形外角和内角的关系求出∠CED=∠DAC=30°,再由在三角形中等角对等边的性质即可解答.
解答:证明:∵△ABC是等边三角形,
∴∠BAC=∠BCA=60°,
∵AD平分∠BAC,
∴∠BAD=∠DAC=30°,
∵CE=CD,
∴∠CDE=∠CED,
∵∠CDE+∠CED=∠BCA=60°,
∴∠CED=∠DAC=30°,
∴AD=ED.
点评:本题考查了等边三角形的性质;解答此题的关键是利用等边三角形三线合一的性质及三角形外角的性质得到角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案