·ÖÎö £¨1£©Ê×ÏÈÇó³öA¡¢BÁ½µã×ø±ê£¬ÍƳö¶¥µã×ø±êD£¨1£¬-4£©´úÈëÅ×ÎïÏߵĽâÎöʽÇó³öa¼´¿É£®
£¨2£©¸ù¾ÝA£¨-1£¬0£©£¬C£¨0£¬t£©Á½µã×ø±êÇó³öÖ±ÏßAPµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãP×ø±ê£¬ÔÙ¸ù¾ÝS=S¡÷AKD+S¡÷PKD¼ÆËã¼´¿É£®
£¨3£©¼ÙÉèÖ±ÏßPGµÄ½âÎöʽΪy=-tx+b¡ä£¬°ÑP£¨t+3£¬t2+4t£©£¬´úÈëµÃµ½b¡ä=2t2+7t£¬ÍƳöÖ±ÏßPGµÄ½âÎöʽΪy=-tx+2t2+7t£¬ÓÉ$\left\{\begin{array}{l}{y={x}^{2}-2x-3}\\{y=-tx+2{t}^{2}+7t}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=t+3}\\{y={t}^{2}+4t}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2t-1}\\{y=4{t}^{2}+8t}\end{array}\right.$£¬ÍƳöµãG×ø±ê£¨-2t-1£¬4t2+8t£©£¬ÍƳöPE=t+2£¬GH=2t+2£¬ÓÉPE•GH=12£¬µÃµ½£¨t+2£©£¨2t+2£©=12£¬ÍƳöP£¨4£¬5£©£¬Ö±ÏßAPµÄ½âÎöʽΪy=x+1£¬ÉèM£¨m£¬m2-2m-3£©£¬ÔòN£¨m£¬m+1£©£¬¸ù¾ÝAN=MNÁгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©¶ÔÓÚÅ×ÎïÏßy=ax2-2ax-3a£¬Áîy=0£¬µÃµ½ax2-2ax-3a=0£¬½âµÃx=-1»ò3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡àÅ×ÎïÏߵĶԳÆÖáx=1£¬¶¥µãD×ø±êΪ£¨1£¬-4£©£¬
°ÑD£¨1£¬-4£©´úÈëy=ax2-2ax-3a£¬µÃµ½a=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x-3£®
£¨2£©Èçͼ2ÖУ¬ÉèPAÓëÅ×ÎïÏߵĶԳÆÖá½»ÓÚµãK£®
ÉèÖ±ÏßAPµÄ½âÎöʽΪy=kx+b£¬°ÑA£¨-1£¬0£©£¬C£¨0£¬t£©´úÈëµÃµ½$\left\{\begin{array}{l}{b=t}\\{-k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=t}\\{b=t}\end{array}\right.$£¬
¡àÖ±ÏßAPµÄ½âÎöʽΪy=tx+t£¬
ÓÉ$\left\{\begin{array}{l}{y=tx+t}\\{y={x}^{2}-2x-3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=t+3}\\{y={t}^{2}+4t}\end{array}\right.$£¬
¡àµãP×ø±ê£¨t+3£¬t2+4t£©£¬K£¨1£¬2t£©£¬
¡àS=S¡÷AKD+S¡÷PKD=$\frac{1}{2}$•£¨2t+4£©•£¨t+3+1£©=t2+6t+8£¨t£¾0£©£®
£¨3£©Èçͼ3ÖУ¬
¡ßPE¡ÍÅ×ÎïÏߵĶԳÆÖᣬPGÓëPA¹ØÓÚPE¶Ô³Æ£¬
¡à¿ÉÒÔ¼ÙÉèÖ±ÏßPGµÄ½âÎöʽΪy=-tx+b¡ä£¬°ÑP£¨t+3£¬t2+4t£©£¬´úÈëµÃµ½b¡ä=2t2+7t£¬
¡àÖ±ÏßPGµÄ½âÎöʽΪy=-tx+2t2+7t£¬
ÓÉ$\left\{\begin{array}{l}{y={x}^{2}-2x-3}\\{y=-tx+2{t}^{2}+7t}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=t+3}\\{y={t}^{2}+4t}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2t-1}\\{y=4{t}^{2}+8t}\end{array}\right.$£¬
¡àµãG×ø±ê£¨-2t-1£¬4t2+8t£©£¬
¡àPE=t+2£¬GH=2t+2£¬
¡ßPE•GH=12£¬
¡à£¨t+2£©£¨2t+2£©=12£¬
¡àt=1»ò-4£¨ÉáÆú£©£¬
¡àP£¨4£¬5£©£¬Ö±ÏßAPµÄ½âÎöʽΪy=x+1£¬ÉèM£¨m£¬m2-2m-3£©£¬ÔòN£¨m£¬m+1£©
¡ßAN=NM£®
¡à$\sqrt{2}$£¨m+1£©=m+1-£¨m2-2m+3£©£¬
¡àm2+£¨$\sqrt{2}$-3£©m+$\sqrt{2}$-4=0£¬
¡à£¨m+1£©£¨m+$\sqrt{2}$-4£©=0£¬
¡àm=4-$\sqrt{2}$»ò-1£¨ÉáÆú£©£¬
¡àµãMµÄºá×ø±êΪ4-$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Èý½ÇÐÎÃæ»ý¡¢·½³Ì×éµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓòÎÊý£¬Ñ§»áÓ÷½³Ì×éÇóÁ½¸öº¯ÊýͼÏóµÄ½»µã×ø±ê£¬Ñ§»á°ÑÎÊÌâת»¯Îª·½³Ì½â¾ö£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com