精英家教网 > 初中数学 > 题目详情
在如图所示的直角坐标系中,点C在y轴的正半轴上,四边形OABC为平行四边形,OA=2,∠AOC=60°,以OA为直径的⊙P经过点C,点D在y轴上,DM为始终与y轴垂直且与AB边相交的动直线,设DM与AB边的交点为M(点M在线段AB上,但与精英家教网A、B两点不重合),点N是DM与BC的交点,设OD=t;
(1)求点A和B的坐标;
(2)设△BMN的外接圆⊙G的半径为R,请你用t表示R及点G的坐标;
(3)当⊙G与⊙P相外切时,求直角梯形OAMD的面积.
分析:(1)利用直径对的圆周角的直角.连接AC,易知OC=1,又∠AOC=60°,易求A点坐标为(
3
,1),再利用平行四边形的性质知AB=OC=1,即可求解;
(2)因为DM⊥y轴,且ABCD是平行四边形,所以⊙G的圆心G在BN的中点处.
然后作GH⊥x轴于H,交DM于F,GK⊥BM于K,则有FM=
1
2
BM,而BM=2-t,所以MN=
3
(2-t).
设G的坐标为(x,y),则有x=DM-
1
2
MN,y=OD+
1
2
BM,点G坐标可求.
(3)根据外切的性质,连接PG,则PG=3-t①;
再作PE⊥GH于E,根据勾股定理PG=
PE2+GE2
,结合点的坐标,表示PG=
t2-t+1
②.
解①②组成的方程组,求出t值,再分别求出AM、DM值,即可求解.
解答:精英家教网解:(1)连接AC.
∵OA为⊙P的直径,
∴∠ACO=90°.
又∵OA=2,∠AOC=60°,
∴OC=1,AC=
3

∴点A的坐标为(
3
,1).
又四边形OABC为平行四边形,
∴AB∥OC,AB=OC,
∴点B的坐标为(
3
,2).

(2)∵DM⊥y轴,且AB∥OC,
∴DM⊥AB,
∴∠NMB=90°.
∴G是圆心G为BN的中点.
又∵∠B=∠AOC=60°,
∴BM=
1
2
BN=R.
而点B的纵坐标为2,点M的纵坐标=点D的纵坐标=t,
∴BM=2-t,
∴R=2-t.
过点G作GH∥y轴,交x轴于点H,交DM于点F.
过点G作GK∥x轴,交AB于点K.
根据垂径定理,得到
FM=
1
2
MN,KM=
1
2
BM.
设点G的坐标为(x,y),
∵NM=
3
(2-t),
∴x=DM-
1
2
MN=
3
-
3
2
(2-t)=
3
2
t,
y=OD+
1
2
BM=t+
1
2
(2-t)=1+
1
2
t,
∴点G的坐标为(
3
2
t,1+
1
2
t).

(3)连接GP.过点P作PE∥x轴,交GH于点E.
由PE⊥GE,根据勾股定理,得
GP=
PE2+GE2
=
(
3
2
t-
3
2
)
2
+(1+
t
2
-
1
2
)
2
=
t2-t+1

当⊙G与⊙P外切时,PG=R+1,
t2-t+1
=3-t,
解得t=
8
5

经检验t=
8
5
是原方程的根.
此时,OD=t=
8
5
,AM=1-MB=
3
5
,DM=AC=
3

∴直角梯形OAMD的面积为:
S=
OD+AM
2
•DM=
(
8
5
+
3
5
)
2
×
3
=
11
10
3
点评:本题考查了点的坐标、平行四边形的性质、圆周角的性质、勾股定理、直角梯形、垂径定理等知识.
本题是代数几何综合型的试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大八年级版 2009-2010学年 第19-26期 总第175-182期 北师大版 题型:044

在如图所示的直角坐标平面上,表示下列各点:(44)(14)(32)(82)(104)(44)(48)(87)(85)(46)

(1)用线段依次按照上述顺序把各点连接起来形成一个图案,这个图案像什么?

(2)把这些点的横坐标都加5,纵坐标不变,想象由这些点顺次连接形成的图案与(1)中的图案有什么关系?

(3)把题目中各点的横坐标不变,纵坐标都乘以-1,重新在图中描点、连线,得到的图案与(1)中的图案有什么关系?

查看答案和解析>>

科目:初中数学 来源:《第2章 二次函数》2010年单元测试卷(解析版) 题型:解答题

如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省湖州市吴兴区九年级(上)第一次月考数学试卷(解析版) 题型:解答题

如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?

查看答案和解析>>

科目:初中数学 来源:《第2章 二次函数》2010年单元测试2(解析版) 题型:解答题

如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?

查看答案和解析>>

同步练习册答案