精英家教网 > 初中数学 > 题目详情

如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.

答案见试题解析.

解析试题分析:根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.
解答:证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.
考点:1.平行线的判定与性质;2.对顶角、邻补角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

【问题提出】如果我们身边没有量角器和三角板,如何作15°大小的角呢?
【实践操作】如图.
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC.
第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN.
【问题解决】
(1)求∠NBC的度数;
(2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除∠NBC的度数以外).
(3)你能继续折出15°大小的角了吗?说说你是怎么做的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知∠ABC,点P在射线BA上,请根据“同位角相等,两直线平行”,利用直尺和圆规,过点P作直线PD平行于BC。(保留作图痕迹,不写作法。)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知点是线段的中点,点是线段的中点,点是线段的中点.

(1)若线段,求线段的长.
(2)若线段,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.

(1)求∠MON的大小.
(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(6分)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,AD//BC,,AC平分,求的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A的高度AB为(  )

A.3米 B.4.5米 C.6米 D.8米 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线相交于点平分求∠2和∠3的度数.

查看答案和解析>>

同步练习册答案