精英家教网 > 初中数学 > 题目详情
20.填空:$\frac{x}{{x}^{2}-xy}$=$\frac{1}{()}$,$\frac{-x+y}{-x-y}$=-$\frac{()}{x+y}$.

分析 根据分式的基本性质和化简方法,逐一化简即可.

解答 解:$\frac{x}{{x}^{2}-xy}$=$\frac{1}{x-y}$,$\frac{-x+y}{-x-y}$=-$\frac{-x+y}{x+y}$.
故答案为:x-y、-x+y.

点评 此题主要考查了分式的基本性质和应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.抛物线y=ax2(a<0)上有三点坐标分别为(-1,y1)(-2,y2)(3,y3),试比较y1,y2,y3的大小y1<y2<y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨询得到的信息:

根据上述信息,求小明乘坐城际直达动车到上海所需的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如果圆环中大圆的半径为r,小圆的半径为$\frac{r}{2}$,则圆环的面积是$\frac{3}{4}$πr2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,一个古代棺木被探明位于A点地下24米处,由于A点地面下有煤气管道,考古人员下能垂直向下挖掘,他们被允许从距A点8米的B点挖掘,考占人员应以与地平面形成多大的角度进行挖掘才能沿最短路线挖到棺木?他们需要挖多长的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.(1)已知⊙O的半径为5,P为⊙O内一点,且OP=3;过点P的弦长是整数的弦有4条;
(2)如图⊙O的直径是10,弦AB=6,P是AB上一动点,则OP的取值范围是4≤OP≤5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿A边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).
(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?
(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?
(3)如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从C出发,沿CB移动(到达点B即停止运动),是否存在一个时刻,PQ同时平分△ABC的周长与面积?若存在求出这个时刻的t 值,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,等腰△ABC中,AB=AC=13,BC=10,D是BC边上任意一点,DE⊥AB于E,DF⊥AC于点F,则DE+DF=$\frac{120}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O是等边三角形ABC的外接圆,点P是$\widehat{AB}$上一点,连接AP,CP,作射线BP.
(1)求证:PC平分∠APB;
(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论;
(3)若AP=2,PC=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案