精英家教网 > 初中数学 > 题目详情
阅读下列问题:解方程组
4x+3y=6
2x+y=4

解:(2)×2得4x+y=4,(3)…A;(1)-(3)得2y=2…B,所以y=1,把y=1代入(2)中,得2x+1=4,…C,所以x=
3
2

所以这个方程组的解为
x=
3
2
y=1
,…D
问:上述解方程组的步骤是正确?若有错误,请指出在哪一个步骤出现错误,并说明错误的原因.
分析:根据解二元一次方程组的加减消元法与代入消元法解方程组即可.
解答:解:上述解方程组的步骤有错误,错误在于步骤A,当(2)×2时,未把方程(2)的各项都乘以2,方程(3)应为4x+y=8.
点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法与代入消元法是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:解方程(x2-1)2-5(x2-1)+4=0.
明明的做法是:将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程可化为y2-5y+4=0,解得y1=1,y2=4.
(1)当y=1时,x2-1=1,解得x=±
2

(2)当y=4时,x2-1=4,解得x=±
5

综合(1)(2),可得原方程的解为x1=
2
,  x2=-
2
,  x3=
5
,  x4=-
5

请你参考明明同学的思路,解方程x4-x2-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、阅读理解下列材料然后回答问题:
解方程:x2-3|x|+2=0
解:(1)当x≥0时,原方程化为x2-3x+2=0,解得:
x1=2,x2=1
(2)当x<0时,原方程化为x2+3x+2=0,解得:x1=1,x2=-2.
∴原方程的根是x1=2,x2=1,x3=1,x4=-2.
请观察上述方程的求解过程,试解方程x2-|x|-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面解题过程,然后解答问题:
解方程:x4-x2-6=0
解:设y=x2,则原方程可化为y2-y-6=0,解得:y1=3,y2=-2
当y=3时,x2=3,?∴x=±
3

当y=-2时,x2=-2,原方程无实数根.
∴原方程的解为:x1=
3
, x2=-
3

这种解方程的方法叫“换元法”.
仔细体会这种方法的过程步骤,然后按照上述步骤解下列方程:
x+1
x
-
2x
x+1
=1

解:设y=
x
x+1
,则原方程可化为关于y的方程:
 

解得:y1=
????
.
, y2=
????
.
?

请你将后面的过程补充完整:

查看答案和解析>>

科目:初中数学 来源: 题型:

探究发现
阅读下列解题过程并解答下列问题:
解方程|x+3|=2.
解:①若x+3>0时,原方程可化为一元一次方程x+3=2.∴x=-1;
②若x+3<0时,原方程可化为一元一次方程-(x+3)=2.∴x=-5;
③若x+3=0时,则原式中|0|=2,这显然不成立,∴原方程的解是x=-1或x=-5.
(1)解方程|3x-2|-4=0.
(2)若方程|x-5|=2的解也是方程4x+m=5x+1的解,求m2-4m+4的值.
(3)探究:方程|x+2|=b+1有解的条件.

查看答案和解析>>

科目:初中数学 来源:1+1轻巧夺冠·优化训练(北京课改版)八年级数学(下) 北京课改版 题型:044

阅读下列材料:

解方程

解:方程两边同乘x-2,约去分母,得

1=x-1-3(x-2)

解这个整式方程,得x=2.

所以,原方程的解为x=2.

根据以上材料,回答下列问题:

(1)以上解答是否有错误,若有错误,指出错误,并改正;

(2)请你根据这个方程的特点,用另外一种方法解答.

查看答案和解析>>

同步练习册答案