精英家教网 > 初中数学 > 题目详情

如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E在线段OC上,作∠MEN=∠AOC,使∠MEN的一边始终经过点A,另一边交线段BC于点F,连接AF.

(1)求抛物线的解析式;
(2)当点F是BC的中点时,求点E的坐标;
(3)当△AEF是等腰三角形时,求点E的坐标.

(1)y=-x2x;(2)(,0);(3)(3,0)、(2,0)、(,0).

解析试题分析:(1)根据题意可设该抛物线的解析式为:y=ax(x-8)(a≠0).然后将点A或点B的坐标代入求值即可;
(2)由相似三角形△AOE∽△ECF的对应边成比例求得线段OE的长度,则易求点E的坐标;
(3)需要分类讨论:当AE=EF、AF=EF和AE=AF时,分别求得点E的坐标.
试题解析:(1)抛物线中,AB∥OC,由对称性可知有等腰梯形AOCB.
而OA=5,AB=2,OC=8
则A(3,4),B(5,4)
抛物线的解析式是y=-x2x
(2)可以证明△AOE∽△ECF
,不妨设E(x,0),其中0≤x≤8,
,整理得x2-8x+12.5=0,解得
从而点E的坐标为(,0)
(3)由(2)中相似还可知AO:EC=AE:EF,若△AEF为等腰三角形,则有三种可能.

①当EA=EF时,有EC=AO=5,∴E(3,0)
②当AE=AF时,作AH⊥EF于H,有AE:EF=5:6
∴EC=AO=6,
∴E(2,0)
③当FA=FE时,同理可得AE:EF=6:5
∴EC=AO=
∴E(,0)
综上所述,符合要求的点E有三个.
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知二次函数的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).

(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数.
(1)m=       时,函数图像与x轴只有一个交点;
(2)m为何值时,函数图像与x轴没有交点;
(3)若函数图像与x轴交于A、B两点,与y轴交于点C,且△ABC的面积为4,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.

(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线轴相交于两点(点在点的左侧),与轴相交于点

(1)点的坐标为        ,点的坐标为        
(2)在轴的正半轴上是否存在点,使以点为顶点的三角形与相似?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b=        ,c=         
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;

x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若将此图象沿x轴向左平移3个单位,直接写出平移后图象所对应的函数关系式           .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当       秒时,边恰好经过点;当       秒时,运动停止;
(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

查看答案和解析>>

同步练习册答案