精英家教网 > 初中数学 > 题目详情
(2012•香洲区一模)如图,已知正方形ABCD的边长为28,动点P从A开始在线段AD上以每秒3个单位长度的速度向点D运动(点P到达点D时终止运动),动直线EF从AD开始以每秒1个单位长度的速度向下平行移动(即EF∥AD),并且分别与DC、AC交于E、F两点,连接FP,设动点P与动直线EF同时出发,运动时间为t 秒.
(1)t为何值时,梯形DPFE的面积最大?最大面积是多少?
(2)当梯形DPFE的面积等于△APF的面积时,求线段PF的长.
(3)△DPF能否为一个等腰三角形?若能,试求出所有的t的值;若不能,请说明理由.
分析:(1)求出AO=OF=t,DP=AD-AP=28-3t,DE=AO=OF=t,EF=OE-OF=28-t,根据面积公式求出即可;
(2)根据面积相等得出关于t的方程,求出方程的解即可;
(3)分为三种情况:①DP=PF,②DF=DF,③PF=DF,根据勾股定理即可得出关于t的方程,求出即可.
解答:解:(1)
∵在正方形ABCD中,∠BAC=45°,∠BAD=90°,
∴∠OAF=45°=∠OFA,
∴AO=OF=t,
∵DP=AD-AP=28-3t,DE=AO=OF=t,EF=OE-OF=28-t,
∴S梯形DPFE=
1
2
(DP+EF)×ED,
即S=
1
2
(28-3t+28-t)t
S=-2t2+28t=-2(t-7)2+98,
∵-2<0,
∴S有最大值,当t=7时,S的最大值是98;
(2)∵梯形DPFE的面积等于△APF的面积,
∴-2t2+28t=
1
2
•3t•t,
解得:t=0(此时不存在梯形DPFE,舍去),t=8,

过F作FN⊥AD于N,
则OF=AN=t=8,NP=3t-t=2t=16,
由勾股定理得:PF=
t2+(2t)2
=
5
t=8
5

(3)分为三种情况:①当PF=DP时,
则28-3t=
5
t,
t=21-7
5

②当DF=PD时,
(28-t)2+t2
=
(28-3t)2


t=0(舍去),t=16>
28
3
舍去;
③当PF=CF时,由勾股定理得:[28-
1
2
(28-3t)]2+t2=t2+[
1
2
(28-3t)]2
即14+
3
2
t=14-
3
2
t,解得:t=0(舍去);
14+
3
2
t)=-(14-
3
2
t),此方程无解;
综合上述:当t=21-7
5
时,
即△DPF能为一个等腰三角形,此时t的值是21-7
5
点评:本题考查了勾股定理,梯形和三角形的面积,等腰三角形的性质和判定等知识点的应用,也考查二次函数的解析式,最值问题,以及坐标的变换的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•香洲区一模)王明决定在暑假期间到工厂打工.一天他到某长了解情况,下面是厂方有关人员的谈话内容:
厂长说:我厂实行计件工资制,就是在发给每人相同生活费基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;
工人甲说:我上个月完成了450件产品,月收入是2850元;
工人乙说:我上个月完成了300件产品,月收入是2100元.
根据上述内容,完成下面问题:
(1)设该厂工人每生产一件产品得a元,每月生活费为b元,求a,b的值;
(2)厂长决定聘用王明.由于王明工作非常认真,一个月收入高达3166元,问他该月的产量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)8的立方根为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)计算2a2•a3的结果是
2a5
2a5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)将抛物线y=x2向右平移一个单位,所得函数解析式为
y=(x-1)2
y=(x-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)如图:⊙I是Rt△ABC的内切圆,∠C=90°,AC=6,BC=8,则⊙I的半径是
2
2

查看答案和解析>>

同步练习册答案