精英家教网 > 初中数学 > 题目详情
精英家教网如图,点E在线段AB上,DA⊥AB,CB⊥AB,DE、CE分别平分∠ADC、∠BCD,AD=2,AE=3,EC=3
2

(1)找出图中所有的相似三角形,并就其中的一对给予证明;
(2)求AB的长.
分析:(1)△ADE∽△EDC∽△BEC.由于DA⊥AB,CB⊥AB,易知AD∥BC,而DE、CE是角平分线,易求∠DEC=90°,从而易证
△ADE∽△EDC;
(2)在Rt△ADE中,利用勾股定理可求DE,而△ADE∽△BEC,利用比例线段可求BE,进而可求AB.
解答:精英家教网(1)△ADE∽△EDC∽△BEC.
证明:∵DA⊥AB,CB⊥AB,
∴AD∥BC,
则∠ADC+∠BCD=180°,
又∵DE、CE分别平分∠ADC、∠BCD,
∴2(∠EDC+∠ECD)=180°,
则∠EDC+∠ECD=90°,
∴∠DEC=90°,
在Rt△ADE和Rt△EDC中,
∵∠ADE=∠EDC,
∴△ADE∽△EDC;

(2)在Rt△ADE中,∵AD=2,AE=3
由勾股定理,得DE=
22+32
=
13

∵△ADE∽△BEC,
BE
AD
=
EC
DE

BE=
3
2
13
×2=
6
26
13

∴AB=AE+BE=3+
6
13
26
点评:本题考查了勾股定理、相似三角形的判定和性质.解题的关键是证明AD∥BC,且求出∠DEC=90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.精英家教网
(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C在线段AB上,点M、N分别是AC、BC的中点.精英家教网
(1)若AC=9cm,CB=6cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?
(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.精英家教网
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图,点C在线段AB上,AC=18cm,BC=6cm,点M、N分别是AC、BC的中点,求MN的长;
(2)把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,则MN的长是多少?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M在线段AB上,MB=4cm,NB=9cm,且N是AM的中点,则AB=
14
14
cm.

查看答案和解析>>

同步练习册答案