精英家教网 > 初中数学 > 题目详情
4.如图,在△ABC与△OCD中,∠ACB=∠DCO=90°,O为AB的中点.
(1)求证:∠B=∠ACD;
(2)已知点E在AB上,且BC2=AB•BE;
①证明:CD与以A为圆心、AE为半径的⊙A相切;
②若tan∠ACD=$\frac{3}{4}$,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=$\frac{81}{7}$.

分析 (1)根据∠ACB=∠DCO=90°,得到∠ACD=∠OCB,根据直角三角形的性质得到OC=OB,得到∠OCB=∠B,利用等量代换证明结论;
(2)①因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,过点A作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切;
②根据正切的概念分别求出CE、BE、AC、AE,根据正弦的定义解答即可.

解答 (1)证明:∵∠ACB=∠DCO=90°,
∴∠ACB-∠ACO=∠DCO-∠ACO,
即∠ACD=∠OCB,
∵点O是AB的中点,
∴OC=OB,
∴∠OCB=∠B,
∴∠ACD=∠B;
(2)①作AF⊥CD于点F,
∵BC2=AB•BE,
∴$\frac{BC}{AB}$=$\frac{BE}{BC}$,
∵∠B=∠B,
∴△ABC∽△CBE,
∴∠ACB=∠CEB=90°,
∵∠CEB=90°,
∴∠B+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠B=∠ACE,
∵∠ACD=∠B,
∴∠ACD=∠ACE,
∴CA平分∠DCE,
∵AF⊥CE,AE⊥CE,
∴AF=AE,
∴直线CD与⊙A相切;
②∵∠B=∠ACD,tan∠ACD=$\frac{3}{4}$,
∴tan∠B=$\frac{3}{4}$,
∵BC=10,
∴CE=6,BE=8,AC=$\frac{15}{2}$,AB=$\frac{25}{2}$,
∴AE=$\frac{9}{2}$,OE=$\frac{7}{4}$,
∵O为AB的中点,
∴CO=$\frac{1}{2}$AB=$\frac{25}{4}$,
∴sin∠OCE=$\frac{OE}{OC}$=$\frac{7}{25}$,
∵∠D=∠OCE,
∴sin∠D=$\frac{7}{25}$,又AF=AE=$\frac{9}{2}$,
∴$\frac{\frac{9}{2}}{AD}$=$\frac{7}{25}$,
解得,AD=$\frac{225}{14}$,
∴DE=AD-AM=$\frac{81}{7}$,
故答案为:$\frac{81}{7}$.

点评 本题考查圆的综合问题,涉及等量代换,勾股定理,相似三角形的判定与性质,锐角三角函数等知识,知识点较综合,需要学生灵活运用所学知识解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,An,则点A2017的坐标为(0,32016).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
(3)在(2)的条件下,直接写出tan∠CAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先化简,再求值:($\frac{1}{a+2}$-$\frac{1}{a-2}$)÷$\frac{1}{a-2}$,其中a=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.对于一个圆和一个正方形给出如下定义:若圆上存在到此正方形四条边距离都相等的点,则称这个圆是该正方形的“等距圆”.
如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.

(1)当r=2$\sqrt{2}$时,在P1(0,2),P2(-2,4),P3(4$\sqrt{2}$,2),P4(0,2-2$\sqrt{2}$)中可以成为正方形ABCD的“等距圆”的圆心的是P2(-2,4)或P4(0,2-2$\sqrt{2}$);
(2)若点P坐标为(-3,6),则当⊙P的半径r=5时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线AC的位置关系?并说明理由.
(3)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程
(1)2x2+5x=4
(2)2(x-2)2=(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)($\frac{2}{3}$-$\frac{3}{4}$+$\frac{1}{6}$)÷(-$\frac{1}{24}$)(用简便方法);
(2)-23-(-1-$\frac{1}{2}$)÷3×[3-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.分解因式:
(1)x2-4y2-(x2+4xy+4y2);
(2)x3+x2y-xy2-y3

查看答案和解析>>

同步练习册答案