精英家教网 > 初中数学 > 题目详情
(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

【答案】分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;
(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;
(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.
解答:解:(1)过点B作BD⊥x轴,垂足为D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,(1分)
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,(2分)
∴BD=OC=1,CD=OA=2,(3分)
∴点B的坐标为(-3,1);(4分)

(2)抛物线y=ax2+ax-2经过点B(-3,1),
则得到1=9a-3a-2,(5分)
解得a=
所以抛物线的解析式为y=x2+x-2;(7分)

(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;
则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)
过点P1作P1M⊥x轴,
∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,
∴△MP1C≌△DBC.(10分)
∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);(11分)
②若以点A为直角顶点;
则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)
过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)
∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)
经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.(16分)
点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力,综合性强,能力要求极高.考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2010年福建省厦门市湖里区九年级下适应性考试数学模拟试卷(3)(解析版) 题型:解答题

(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省台州市温岭市中考模拟试卷(解析版) 题型:解答题

(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(河上镇中 董勇) (1)(解析版) 题型:解答题

(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广西崇左市中考数学试卷(解析版) 题型:解答题

(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案