【题目】如图,二次函数的图像交轴于,交轴于,过画直线。
(1)求二次函数的解析式;
(2)点在轴正半轴上,且,求的长;
(3)点在二次函数图像上,以为圆心的圆与直线相切,切点为。
① 点在轴右侧,且(点与点对应),求点的坐标;
② 若的半径为,求点的坐标。
【答案】(1)(2)3/2(3)①或②或
【解析】
解:(1)∵二次函数的图像交轴于
∴设该二次函数的解析式为:………………1分
又二次函数的图像交轴于
将代入,得
解得,………………2分
∴抛物线的解析式为,即………………3分
(2)设,则
在中,
由勾股定理,得………………4分
解得,,即………………5分
(3)① ∵,点与点对应
∴
情形1:如图,当在点下方时
∵
∴轴,∴
点在二次函数图像上
∴………………6分
解得(舍去)或,∴………………7分
情形2:如图,当在点上方时
∵
由(2)得,为直线与抛物线的另一交点
设直线的解析式为
把的坐标代入,得
解得,,∴………………8分
由,解得,(舍去)或
此时,∴………………9分
∴点的坐标为或
②以为圆心的圆与直线相切,则点到直线的距离即为圆半径。因为同时也在抛物线上,因此利用平行线间距离处处相等的性质,先在轴上找到与直线距离为的点,过点作与直线平行的直线,根据平行直线的解析式中相等的性质确定直线解析式,再联立直线与抛物线解析式求得坐标。
在轴上取一点,过点作于点,使
∵
∴,∴
∴,解得
∴或
过点作,交抛物线于点
设直线的解析式为,将代入可得,,解得
∴设直线的解析式为,将或代入可得,
或,解得或
则直线的解析式为或
当时,,
,方程无实数解 ………………10分
当时,,
解得
∴点坐标为或……………12分
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.
(1)求线段OC的长度;
(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;
(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有________名;
(2)请补全条形统计图;
(3)扇形统计图中“基本了解”部分所对应扇形的圆心角为________度;
(4)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张卡片(大小、颜色、形状相同)的正面上分别写有如下四个等式中的一个等式:①;②;③;④;小英同学闭上眼睛从四张卡片中随机抽出一张,再从剩下的卡片中随机抽出另一张,请结合图形回答下列问题:
(1)当抽得②和④时,用②和④作条件能否判定四边形是平行四边形,请说明理由;
(2)请你用树状图或表格表示抽取两张卡片上的条件的所有可能出现的结果(用序号表示)并求以已经抽取的两张卡片上的条件为已知,使四边形不能构成平行四边形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】写字是学生的一项基本功,为了了解某校学生的书写情况,随机对该校部分学生进行测试,测试结果分为A,B,C,D四个等级.根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息,回答以下问题:
(1)把条形统计图补充完整;
(2)若该校共有2000名学生,估计该校书写等级为“D级”的学生约有 人;
(3)随机抽取了4名等级为“A级”的学生,其中有3名女生,1名男生,现从这4名学生中任意抽取2名,用列表或画树状图的方法,求抽到的两名学生都是女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程,如果方程有两个实数根,那么(说明:定理成立的条件)。比如方程中,,所以该方程有两个不等的实数根,记方程的两根为,,那么+=, =,请根据阅读材料解答下列各题:
(1)已知方程的两根为、,且 >,求下列各式的值:
① ②
(2)已知是一元二次方程的两个实数根.
①是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.
②求使的值为整数的实数的整数值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com