【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度. 图1为点P在⊙O外的情形示意图.
(1)若点B(1,0),C(1,1), ,则SB=;SC=;SD=;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.
【答案】
(1)0; ﹣1;
(2)解:设直线y=x+b与分别与x轴、y轴交于F、E,
作OG⊥EF于G,
∵∠FEO=45°,
∴OG=GE,
当OG=3时,GE=3,
由勾股定理得,OE=3 ,
此时直线的解析式为:y=x+3 ,
∴直线y=x+b上存在点M,使得SM=2,b的取值范围是﹣3 ≤b≤3
(3)解:∵T在⊙O内,
∴ST≤1,
∵ST≥SR,
∴SR≤1,
∴线段PQ长度的最大值为1+2+1=4.
【解析】解:(1)∵点B(1,0), ∴SB=0,
∵C(1,1),
∴SC= ﹣1,
∵ ,
∴SD= ,
故答案为:0; ﹣1; ;
(1)根据点的坐标和新定义解答即可;(2)根据直线y=x+b的特点,结合SM=2,根据等腰直角三角形的性质解答;(3)根据T在⊙O内,确定ST的范围,根据给出的条件、结合图形求出满足条件的线段PQ长度的最大值.
科目:初中数学 来源: 题型:
【题目】“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.
问题为:
(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有可能出现结果;
(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;
(3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度. 图1为点P在⊙O外的情形示意图.
(1)若点B(1,0),C(1,1), ,则SB=;SC=;SD=;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.
(1)求证:△BCF≌△BA1D.
(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,E,F是对角线BD上的两点, 如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列4个结论中结论正确的有 .
①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察图,解答下列问题.
(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,……,第六层有11个圆圈.如果要你继续
下去,那么第七层有几个小圆圈?第n层呢?
(2)某一层上有77个圆圈,这是第几层?
(3)数图中的圆圈个数可以有多种不同的方法.
比如:前两层的圆圈个数和为(1+3)或22,
由此得,1 + 3 = 22.
同样,
由前三层的圆圈个数和得:1 + 3 + 5 = 32.
由前四层的圆圈个数和得:1 + 3 + 5 + 7 = 42.
由前五层的圆圈个数和得:1 + 3 + 5 + 7 + 9 = 52.
……
根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.
(4)计算:1 + 3 + 5 + … + 19的和;
(5)计算:11 + 13 + 15 + … + 99的和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长分别为1和2,另一种纸片的两条直角边长都为2.
图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1. 请用三种方法将图中所给四块直角三角形纸片全部用上,互不重叠且不留空隙,三种方法所拼得的平行四边形(非矩形)的周长互不相等,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上.
要求:(1)所画图形各顶点必须与方格纸中的小正方形顶点重合;
(2)画图时,要保留四块直角三角形纸片的拼接痕迹.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com