精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(),与y轴交于C()点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP’C,那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
(1)y=x2﹣2x﹣3;(2)存在,();(3)(,-),.

试题分析:(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;
(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;
(3) 由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析 式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.
试题解析:(1)将B、C两点的坐标代入得
解得:
所以二次函数的表达式为:y=x2﹣2x﹣3.
(2)存在点P,使四边形POPC为菱形;
设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E

若四边形POP′C是菱形,则有PC=PO;
连接PP′,则PE⊥CO于E,
∴OE=EC=
∴y=
∴x2﹣2x﹣3=
解得:(不合题意,舍去)
∴P点的坐标为(
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),
易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);
S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•OF+QP•BF


时,四边形ABPC的面积最大
此时P点坐标为(,-)四边形ABPC的面积的最大值为.
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

抛物线y=-3x2-x+4与坐标轴的交点个数是(  )
A.3B.2 C.1D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=2(x-1)-1的顶点是(    ).
A.(1,-1)B.(1,1)C.(-1,1)D.(2,-l)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的顶点坐标为,并且经过平移后能与抛物线重合,那么这个二次函数的解析式是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小李投掷铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为什那么铅球运动过程中最高点离地面的距离____米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=x与抛物线y=x2交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于260元。
设每个房间的房价每天增加x元(x为10的整数倍)。
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件。
(1)求售价为70元时的销售量及销售利润;
(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;
(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数(a≠0)的图象,则下列说法:①a>0 ②2a+b="0" ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为(     ).
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案