精英家教网 > 初中数学 > 题目详情
问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为______;当推出∠DAC=15°时,可进一步推出∠DBC的度数为______;可得到∠DBC与∠ABC度数的比值为______;
(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.
(1)①当∠BAC=90°时,
∵∠BAC=2∠ACB,
∴∠ACB=45°,
在△ABC中,∠ABC=180°-∠ACB-∠BAC=45°,
∴∠ACB=∠ABC,
∴AB=AC(等角对等边);
②当∠DAC=15°时,
∠DAB=90°-15°=75°,
∵BD=BA,
∴∠BAD=∠BDA=75°,
∴∠DBA=180°-75°-75°=30°,
∴∠DBC=45°-30°=15°,即∠DBC=15°,
∴∠DBC的度数为15°;
③∵∠DBC=15°,∠ABC=45°,
∴∠DBC=15°,∠ABC=45°,
∴∠DBC:∠ABC=1:3,
∴∠DBC与∠ABC度数的比值为1:3.

(2)猜想:∠DBC与∠ABC度数的比值与(1)中结论相同.
证明:如图2,作∠KCA=∠BAC,过B点作BKAC交CK于点K,连接DK.
∴四边形ABKC是等腰梯形,
∴CK=AB,
∵DC=DA,
∴∠DCA=∠DAC,
∵∠KCA=∠BAC,
∴∠KCD=∠3,
∴△KCD≌△BAD,
∴∠2=∠4,KD=BD,
∴KD=BD=BA=KC.
∵BKAC,
∴∠ACB=∠6,
∵∠BAC=2∠ACB,且∠KCA=∠BAC,
∴∠KCB=∠ACB,
∴∠5=∠ACB,
∴∠5=∠6,
∴KC=KB,
∴KD=BD=KB,
∴∠KBD=60°,
∵∠ACB=∠6=60°-∠1,
∴∠BAC=2∠ACB=120°-2∠1,
∵∠1+(60°-∠1)+(120°-2∠1)+∠2=180°,
∴∠2=2∠1,
∴∠DBC与∠ABC度数的比值为1:3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图梯形ABCD的两底长为AD=6,BC=10,中线为EF,且∠B=90°,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两区域,则△EFP与梯形ABCD的面积比为(  )
A.1:6B.1:10C.1:12D.1:16

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在四边形ABCD中,ADBC,AD≠BC,要使它成为等腰梯形,还需添加一个条件,这个条件可以是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,等腰梯形AOBC的四个顶点坐标分别为A(2,2
3
),O(0,0),B(8,0),C(6,2
3
).
(1)求等腰梯形AOBC的面积;
(2)试说明点A在以OB的中点D为圆心,OB为直径的圆上;
(3)在第一象限内确定点M,使△MOB与△AOB相似,求出所有符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

顺次连接直角梯形四边中点所得的四边形是______形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,AB、CD是两条线段,M是AB的中点,S△DMC、S△DAC、S△DBC分别表示△DMC、△DAC、△DBC的面积.当ABCD时,则有S△DMC=
S△DAC+S△DBC
2

(1)如图2,M是AB的中点,AB与CD不平行时,作AE、MN、BF分别垂直DC于E、N、F三个点,问结论①是否仍然成立?请说明理由.
(2)若图3中,AB与CD相交于点O时,问S△DMC、S△DAC和S△DBC三者之间存在何种相等关系?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCD中,ADBC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).
(1)当t为何值时,四边形PQDC的面积是梯形ABCD的面积的一半;
(2)四边形PQDC能为平行四边形吗?如果能,求出t的值;如果不能,请说明理由.
(3)四边形PQDC能为等腰梯形吗?如果能,求出t的值;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰梯形的下底与上底之差等于它的腰长,则这个梯形的各内角度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果等腰梯形的两底之差等于一腰长,那么这个等腰梯形的锐角为______.

查看答案和解析>>

同步练习册答案