精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ精英家教网,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.
分析:(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ求x即可;
(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8-x)2+y2=(6-y)2+x2然后根据函数的性质来求x的取值范围;
(3)由图形的等量关系列出方程,再根据函数的性质来求最值.
解答:解:(1)当PQ∥AD时,则
∠A=∠APQ=90°,∠D=∠DQP=90°,
又∵AB∥CD,
∴四边形APQD是矩形,
∴AP=QD,
∵AP=CQ,
AP=
1
2
CD=
1
2
×8=4

∴x=4.

(2)如图,连接EP、EQ,则EP=EQ,设BE=y.精英家教网
∴(8-x)2+y2=(6-y)2+x2
∴y=
4x-7
3

∵0≤y≤6,
∴0≤
4x-7
3
≤6,
7
4
≤x≤
25
4


(3)S△BPE=
1
2
•BE•BP=
1
2
4x-7
3
•(8-x)=
-4x2+39x-56
6

S△ECQ=
1
2
•CE•CQ
=
1
2
•(6-
4x-7
3
)•x=
-4x2+25x
6

∵AP=CQ,
∴SBPQC=
1
2
S矩形ABCD=24

∴S=SBPQC-S△BPE-S△ECQ=24-
-4x2+39x-56
6
-
-4x2+25x
6

整理得:S=
4x2-32x+100
3
=
4
3
(x-4)2+12(
7
4
≤x≤
25
4
),
∴当x=4时,S有最小值12,
当x=
7
4
或x=
25
4
时,S有最大值
75
4

∴12≤S≤
75
4
点评:解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案