精英家教网 > 初中数学 > 题目详情
17.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求B的坐标;
(2)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;
(3)是否存在点P,使△OPD的面积等于$\frac{\sqrt{3}}{4}$,若存在,请求出符合条件的点P的坐标(直接写出结果即可)

分析 (1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.
(2)由△ABD由△AOP旋转得到,△ABD≌△AOP,AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形,利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.
(3)分三种情况进行讨论:
①当P在x轴正半轴上时,即t>0时;
②当P在x轴负半轴,但D在x轴上方时;即-$\frac{4\sqrt{3}}{3}$<t≤0时
③当P在x轴负半轴,D在x轴下方时,即t≤-$\frac{4\sqrt{3}}{3}$时.
综合上面三种情况即可求出符合条件的t的值.

解答 解:(1)如图1,

过点B作BE⊥y轴于点E,作BF⊥x轴于点F.
由已知得:BF=OE=2,
∴OF=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴点B的坐标是(2$\sqrt{3}$,2).
设直线AB的解析式是y=kx+b(k≠0),
则有$\left\{\begin{array}{l}{2\sqrt{3}k+b=2}\\{b=4}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=4}\end{array}\right.$.
∴直线AB的解析式是y=-$\frac{\sqrt{3}}{3}$x+4,
(2)∵△ABD由△AOP旋转得到,
∴△ABD≌△AOP.
∴AP=AD,∠DAB=∠PAO.
∴∠DAP=∠BAO=60°.
∴△ADP是等边三角形.
如图2,

过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.
在Rt△BDG中,∠BGD=90°,∠DBG=60°,
∴BG=BD•cos60°=t×$\frac{1}{2}$=$\frac{t}{2}$.DG=BD•sin60°=$\frac{3}{2}$t.
∴OH=EG=2$\sqrt{3}$+$\frac{1}{2}$t,DH=2+$\frac{\sqrt{3}}{2}$t.
∴点D的坐标为(2$\sqrt{3}$+$\frac{1}{2}$t,2+$\frac{\sqrt{3}}{2}$t).
(3)存在.
假设存在点P,在它的运动过程中,使△OPD的面积等于$\frac{\sqrt{3}}{4}$.
设点P为(t,0),下面分三种情况讨论:
①当t>0时,如答图2,BD=OP=t,DG=$\frac{\sqrt{3}}{2}$t,
∴DH=2+$\frac{\sqrt{3}}{2}$t.
∵△OPD的面积等于$\frac{\sqrt{3}}{4}$,
∴$\frac{1}{2}$t(2+$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=$\frac{\sqrt{21}-2\sqrt{3}}{3}$,t2=$\frac{-\sqrt{21}-2\sqrt{3}}{3}$(舍去).
∴点P1的坐标为($\frac{\sqrt{21}-2\sqrt{3}}{3}$,0).
②∵当D在x轴上时,如图3,

根据锐角三角函数求出BD=OP=$\frac{4\sqrt{3}}{3}$,
∴当-$\frac{4\sqrt{3}}{3}$<t≤0时,如答图1,BD=OP=-t,DG=-$\frac{\sqrt{3}}{2}$t,
∴GH=BF=2-(-$\frac{\sqrt{3}}{2}$t)=2+$\frac{\sqrt{3}}{2}$t.
∵△OPD的面积等于$\frac{\sqrt{3}}{4}$,
∴-$\frac{1}{2}$t(2-$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=-$\frac{\sqrt{3}}{3}$,t2=-$\sqrt{3}$
∴点P2的坐标为(-$\frac{\sqrt{3}}{3}$,0),点P3的坐标为(-$\sqrt{3}$,0).
③当t≤-$\frac{4\sqrt{3}}{3}$时,BD=OP=-t,DG=-$\frac{\sqrt{3}}{2}$t,
∴DH=-$\frac{\sqrt{3}}{2}$t-2.
∵△OPD的面积等于$\frac{\sqrt{3}}{4}$,
∴$\frac{1}{2}$(-t)(-2-$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=$\frac{-\sqrt{21}-2\sqrt{3}}{3}$,t2=$\frac{\sqrt{21}-2\sqrt{3}}{3}$(舍去).
∴点P4的坐标为($\frac{-\sqrt{21}-2\sqrt{3}}{3}$,0).
综上所述,点P的坐标分别为P1($\frac{\sqrt{21}-2\sqrt{3}}{3}$,0),P2(-$\frac{\sqrt{3}}{3}$,0),P3(-$\sqrt{3}$,0),P4($\frac{-\sqrt{21}-2\sqrt{3}}{3}$,0).

点评 此题是几何变换综合题,主要考查了待定系数法求函数解析式,锐角三角函数的意义,分类思想,解本题的关键是锐角三角函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,∠BAP+∠APD=180°,∠1=∠2,∠E=40°,试求∠F的度数.
证明:∵∠BAP+∠APD=180°,
∴AB∥CD.
∴∠BAP=∠APC.
又∵∠1=∠2,
∴∠FPA=∠EAP,
∴AE∥FP.
∴∠F=∠E,
∴∠F=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组
(1)$\left\{\begin{array}{l}{3x+2y=19}\\{2x-y=1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x+y)-5(x-y)=2}\\{\frac{x+y}{2}+\frac{x-y}{3}=6}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在下列方格纸中画出△ABC绕点O顺时针旋转90°的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.为了解九(3)班学生每天零花钱的使用情况,小明随机调查了20名同学,结果如表:关于这20名同学每天使用的零花钱,下列说法错误的是(  )
每天使用零花钱(单位:元)012345
人数256421
A.众数是2元B.中位数是2元C.极差是5元D.平均数是2.45元

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列说法正确的是(  )
①0是绝对值最小的实数;       
②相反数大于本身的数是负数;
③数轴上原点两侧的数互为相反数;  
④带根号的数是无理数.
A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在图中,正方形AOBD的边AO,BO在坐标轴上,若它的面积为16,点M从O点以每秒1个单位长度的速度沿x轴正方向运动,当M到达B点时,运动停止.连接AM,过M作AM⊥MF,且满足AM=MF,连接AF交BD于E点,过F作FN⊥x轴于N,连接ME.设点M运动时间为t(s).
(1)直接写出点D和M的坐标(可用含t式子表示);
(2)当△MNF面积为$\frac{8}{3}$时,求t的值;
(3)△AME能否为等腰三角形?若不能请说明理由;若能,求出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.计算9÷(-3)的结果等于(  )
A.-3B.3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过(  )次操作.
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案