精英家教网 > 初中数学 > 题目详情
已知如图,C是⊙O的直径AB的延长线上的一点,D是⊙O上的一点且AD=CD,∠C=30°,求证:DC是⊙O的切线.

【答案】分析:连接OD,要证明DC是⊙O的切线,只要证明∠ODC=90°即可.
解答:证明:连接OD.
∵AD=CD,∠C=30°,
∴∠A=30°,∠DOB=2∠A=60°,
∴∠DOB+∠C=90°,
∴∠ODC=90°,
∴DC是⊙O的切线.
点评:本题考查的是切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知如图,C是⊙O的直径AB的延长线上的一点,D是⊙O上的一点且AD=CD,∠C=30°,求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,A是⊙O的直径CB延长线上一点,BC=2AB,割线AF交⊙O于E、F,D是OB的中点,且DE⊥AF,连接BE、DF.
(1)试判断BE与DF是否平行?请说明理由;
(2)求AE:EC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知如图,D是△ABC的AB边上一点,要使△ABC∽△ACD则还须具备一个条件是
∠ACD=∠B
.(只填一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,D是△ABC的AB边上一点,E在AB的延长线上.
(1)作射线ET,使∠AET=∠CAB(保留作图痕迹,不写作法)
(2)在射线ET上取一点F,使EF=AC,连接DF,试证明当AD=EB时,BC=DF.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下四个结论:(1)∠EBC=22.5°(2)BD=DC;(3)
EC
AE
=
2
-1;(4)AE=2DE.其中错误结论的个数是(  )

查看答案和解析>>

同步练习册答案