精英家教网 > 初中数学 > 题目详情

【题目】如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1 , △ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2 , △AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn= . (用含n的式子表示)

【答案】n
【解析】解:∵等边三角形ABC的边长为2,AB1⊥BC,

∴BB1=1,AB=2,

根据勾股定理得:AB1=

∴S1= × ×( 2= 1

∵等边三角形AB1C1的边长为 ,AB2⊥B1C1

∴B1B2= ,AB1=

根据勾股定理得:AB2=

∴S2= × ×( 2= 2

依此类推,Sn= n

故答案为: n

由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(  )

用电量(度)

120

140

160

180

200

户数

2

3

6

7

2

A.76B.73C.180160D.180170

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字,如图,正方形顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图起跳,第一次掷得,就顺时针连续跳个边长,落到圈;若第二次掷得,就从开始顺时针连续跳个边长,落到圈设游戏者从圈起跳.

)嘉嘉随机掷一次骰子,求落回到圈的概率

淇淇随机掷两次骰子,用列表法求最后落回到圈的概率,并指出她与嘉嘉落回到圈的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用不等式的基本性质求下列不等式的解集,并写出变形的依据.

(1)若x+2016>2017,则x___________

______________________

(2)若2x>-,则x____________

__________________________

(3)若-2x>-,则x____________

___________________________

(4)若->-1,则x_________.

_______________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼顶部有一旗杆AB,甲乙两人分别在相距6米的C、D两处测得B点和A点的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数)

(参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个圆形的花园,其半径为4米,现要扩大花园,将其半径增加2米,这样花园的面积将增加多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式

(2)求出对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 . (把你认为正确说法的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明.

已知,如图所示,BCE,AFE是直线,

AB∥CD,∠1=∠2,∠3=∠4.

求证:AD∥BE

证明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵ ∠1 =∠2 (已知)

∴ ∠1+∠CAF =∠2+ ∠CAF ( )

即:∠ =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

同步练习册答案