精英家教网 > 初中数学 > 题目详情

【题目】如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)

【答案】

【解析】

试题分析:先求出DBE=30°,BDE=30°,得出BE=DE,然后设EC=x,则BE=2x,DE=2x,DC=3x,BC=x,然后根据DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.

试题解析:由题知,DBC=60°,EBC=30°,∴∠DBE=DBC﹣EBC=60°﹣30°=30°.

∵∠BCD=90°,∴∠BDC=90°﹣DBC=90°﹣60°=30°,DBE=BDE,BE=DE.

设EC=x,则DE=BE=2EC=2x,DC=EC+DE=x+2x=3x,BC= ==x,由题知,DAC=45°,DCA=90°,AB=20,∴△ACD为等腰直角三角形,AC=DC,x+60=3x,解得:x=DE=2x=

答:塔高约为 m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):

(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:

如图所示的扇形统计图中,扇形A对应的圆心角为 度,扇形B对应的圆心角为 度;

(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以AC为直径作O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.

(1)求证:DE是O的切线;

(2)若CF=2,DF=4,求O直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.a3+a3=a6
B.(a23=a5
C.a2a3=a5
D.a6÷a3=a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF.
同学们作了一步又一步的研究:

(1)、经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)、小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(3)、小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2m2+m10,则4m2+2m+5_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将RtACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+4的值等于

查看答案和解析>>

同步练习册答案