精英家教网 > 初中数学 > 题目详情
17.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是(  )
A.B.C.D.

分析 根据等边三角形,等腰直角三角形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.

解答 解:A、等边三角形,点P在开始与结束的两边上直线变化,
在点M的对边上时,设等边三角形的边长为a,
则y=$\sqrt{(\frac{\sqrt{3}}{2}a)^{2}+(\frac{3}{2}a-x)^{2}}$(a<x<2a),符合题干图象;
B、等腰直角三角形,点P在开始与结束的两边上直线变化,但是始边是斜边,终边是直角边,长度不相等,题干图象不符合;
C、正方形,点P在开始与结束的两边上直线变化,
在另两边上,先变速增加至∠M的对角顶点,再变速减小至另一顶点,题干图象不符合;
D、圆,MP的长度,先变速增加至MP为直径,然后再变速减小至点P回到点M,题干图象不符合.
故选:A.

点评 本题考查了动点问题函数图象,熟练掌握等边三角形,等腰直角三角形,正方形以及圆的性质,理清点P在各边时MP的长度的变化情况是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列说法正确的是(  )
(1)整式2xy-8x2y+8x3y因式分解的结果是2xy(1-4x+4x2);
(2)要使y=$\frac{\sqrt{3-x}}{x}$有意义,则x应该满足0<x≤3;
(3)“x的2倍与5的和”用代数式表示是一次式;
(4)地球上的陆地面积约为149000000平方千米,用科学记数法表示为1.49×108平方千米.
A.(1)(4)B.(1)(2)C.(2)(3)D.(3)(4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,直线y=-2x+12与x轴、y轴交于A、B两点,点C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)点C的坐标为(3,6);
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以为O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空
证明:延长CB到G,使BG=DE,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即GAF=∠EAF.
又AG=AE,AF=AF,
∴△GAF≌△EAF.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.

变化:在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系相等;
(2)方法迁移:
如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=$\frac{1}{2}$∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想DF,BE,EF之间有何数量关系,并证明你的猜想.试猜想AM与AB之间的数量关系.并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足$∠EAF=\frac{1}{2}∠DAB$,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).猜想:∠B与∠D满足关系:∠B+∠D=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.请阅读下面的材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图1,△ABC中,AD是角平分线,求证:$\frac{BD}{DC}=\frac{AB}{AC}$
分析:要证$\frac{BD}{DC}=\frac{AB}{AC}$,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.
在比例式$\frac{BD}{DC}=\frac{AB}{AC}$中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明$\frac{BD}{DC}=\frac{AB}{AC}$就可以转化为证AE=AC.
(1)证明:过C作CE∥DA,交BA的延长线于E.(完成以下证明过程)
∴AE=AC(等腰三角形的判定定理)
∴△BAD∽△BEC,∴$\frac{BD}{BC}=\frac{AB}{BE}$(相似三角形的性质)∴$\frac{BD}{DC}=\frac{AB}{AC}$
(2)用三角形内角平分线性质定理解答问题:
已知:如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列有理式中①$\frac{2}{x}$,②$\frac{x+y}{2}$,③$\frac{1}{x-2}$,④$\frac{1}{π-1}$中分式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列根式中,最简二次根式是(  )
A.$\sqrt{25a}$B.$\sqrt{0.5}$C.$\sqrt{\frac{a}{2}}$D.$\sqrt{{a^2}+{b^2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)2$\sqrt{5}$+3$\sqrt{2}$-7$\sqrt{5}$+4$\sqrt{2}$
(2)($\sqrt{5}$+$\sqrt{6}$)($\sqrt{5}$-$\sqrt{6}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案