精英家教网 > 初中数学 > 题目详情
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
(1)证明见解析;(2)3cm.

试题分析:(1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠ABH=∠EBH,∠FDG=∠CDG,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;
(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8-x,再利用勾股定理即可求出x的值.
试题解析:(1)证明:∵四边形ABCD是矩形,
∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,
∵△BEH是△BAH翻折而成,
∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,
∵△DGF是△DGC翻折而成,
∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,
∴∠DBH=∠ABD,∠BDG=∠BDC,
∴∠DBH=∠BDG,
∴△BEH与△DFG中,
∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,
∴△BEH≌△DFG,
(2)解:∵四边形ABCD是矩形,AB=6cm,BC=8cm,
∴AB=CD=6cm,AD=BC=8cm,

∵由(1)知,FD=CD,CG=FG,
∴BF=10-6=4cm,
设FG=x,则BG=8-x,
在Rt△BGF中,
BG2=BF2+FG2,即(8-x)2=42+x2
解得x=3,即FG=3cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G
(1)求证:四边形DEBF是平行四边形;
(2)如果∠G=90°,∠C=60°,BC=2,求四边形DEBF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,点O是对角线DB的中点,点P在DB所在的直线上,PE⊥BC于E,PF⊥DC于F.
(1)如图1,当点P与点O重合时,延长FP交AB于点M,求证:AP=EF;
(2)如图2,当点P在线段DB上(不与点D、O、B重合)时,延长FP交AB于点M,求证:AP=EF;
(3)如图3,当点P在DB的延长线上时,请你猜想AP与EF的数量关系及位置关系,直接写出结论;若不成立,请写出相应的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=           s时,以A、C、E、F为顶点四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.

(1)求证:梯形ABCD是等腰梯形;
(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平行四边形ABCD中,∠C=∠B+∠D,则∠A=      ,∠D=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )
A.六边形
B.五边形
C.四边形
D.三边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为(    )
A.1B.2C.2D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,若AB=4,∠CAE=15°,则OE的长为(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案