精英家教网 > 初中数学 > 题目详情
如图,D,E是△ABC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.

【答案】分析:欲求∠BAC的度数,根据已知可利用三角形外角及等腰三角形、等边三角形的性质求解.
解答:解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,
所以∠ADB=120°,∠AEC=120°.
因为BD=AD,AE=EC,
所以∠B=∠BAD=(180°-∠ADB)=(180°-120°)=30°,
∠C=∠CAE=(180°-∠AEC)=(180°-120°)=30°.
所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.
点评:本题综合考查等腰三角形与等边三角形的性质及三角形内角和为180°等知识.此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
(1)若DE=9cm,求AB的长;
(2)若CE=5cm,求DB的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(1)如图1,点E是AB,CD之间的一点且AB∥CD,试说明:∠BED=∠B+∠D;

(2)如图2,点E是AB,CD外一点且AB∥CD,结论有什么变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,E、F是AB上的两点,AE=BF,AC∥BD,∠C=∠D.求证:CF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荣昌县模拟)如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,M是AB上一点,AM=8cm,BM=2cm,N是AB的中点,则MN的长为
3cm
3cm

查看答案和解析>>

同步练习册答案