精英家教网 > 初中数学 > 题目详情

【题目】某货车销售公司,分别试销售两种型号货车各一个月,并从中选择一种长期销售,设每月销售量为x辆若销售甲型货车,每月销售的利润为y1(万元),已知每辆甲型货车的利润为(m+6)万元,(m是常数,9m11),每月还需支出其他费用8万元,受条件限制每月最多能销售甲型货车25辆;若销售乙型货车,每月的利润y2(万元)x的函数关系式为y2=ax2+bx-25,且当x10时,y220,当x20时,y255,受条件限制每月最多能销售乙型货车40辆.

(1)分别求出y1y2x的函数关系式,并确定x的取值范范围;

(2)分别求出销售这两种货车的最大月利润;(最大利润能求值的求值,不能求值的用式子表示)

(3)为获得最大月利润,该公司应该选择销售哪种货车?请说明理由.

【答案】(1)y1(m+6)x8(0x25)y2=﹣x2+5x25(0x40)(2)x25时,y1 取得最大值,最大值为25m+142.当x40时,y2有最大值,最大值为95(3)应选择甲种货车,理由见解析.

【解析】

1)根据待定系数法即可求出两个函数解析式;(2)根据函数的性质和自变量的取值范围即可求解;(3)根据函数的最大值即可求得结果.

(1)根据题意,得

y1(m+6)x8(0x25)

x10y220x20y255代入y2ax2+bx25

解得:

y2(0x40)

(2)m是常数,(9m11),∴m+60

y1 x的增大而增大,

∴当x25时,y1 取得最大值,最大值为25m+142

y2=﹣(x50)2+100

∴当x50时,yx的增大而增大,

0x40

∴当x40时,y2有最大值,最大值为95

(3)y1 的最大值为25m+142.且9m11

367y1417

y2 有最大值为95

95367

故应选择甲种货车.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DAAB=12.

(1)求∠CDB的度数;

(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+6经过点A(﹣20),B40),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m1m4),连接ACBCDBDC

1)求抛物线的解析式.

2)当△BCD的面积等于△AOC的面积的时,求m的值.

3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂生产一种半成品食材,成本为2/千克,每天的产量(百千克)与销售价格(元/千克)满足函数关系式,从市场反馈的信息发现,该半成品食材每天的市场需求量(百千克)与销售价格(元/千克)满足一次函数关系,部分数据如表:

销售价格(元/千克)

2

4

……

10

市场需求量(百千克)

12

10

……

4

已知按物价部门规定销售价格不低于2/千克且不高于10/千克.

1)直接写出的函数关系式,并注明自变量的取值范围;

2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.

①当每天的半成品食材能全部售出时,求的取值范围;

②求厂家每天获得的利润y(百元)与销售价格的函数关系式;

3)在(2)的条件下,当______/千克时,利润有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则应定为______/千克.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)

根据要求,解答下列问题.

(1)根据要求,解答下列问题.

方程x2-2x+1=0的解为________________________;

方程x23x+2=0的解为________________________;

方程x24x+3=0的解为________________________;

…… ……

(2)根据以上方程特征及其解的特征,请猜想:

方程x29x+8=0的解为________________________;

关于x的方程________________________的解为x1=1,x2=n.

(3)请用配方法解方程x29x+8=0,以验证猜想结论的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投资新建了一商场,共有商铺30.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000,少租出商铺1.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000.

1)当每间商铺的年租金定为13万元时,能租出多少间?

2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=x与反比例函数y=k0)的图象交于AB两点,且点A的横坐标为4

1)求k的值;

2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

3)过原点O的另一条直线l交双曲线y=k0)于PQ两点(P点在第一象限),若由点APBQ为顶点组成的四边形面积为24,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字136的三张纸牌给小明,将牌面分别标有数字245的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.

(1)小明抽到标有数字6的纸牌的概率为 ;

(2)请用树状图或列表的方法求小亮获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74cos48°≈0.67tan48°≈1.11≈1.73

查看答案和解析>>

同步练习册答案