精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N(3,2).

(1)求这个二次函数的关系式;
(2)若一次函数y=-x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?
(1)这个二次函数的关系式为y=(x-2)2+1;(2)当n=时,DQ取得最小值,为

试题分析:(1)由于顶点为M(2,1),故设这个二次函数的关系式为y=a(x-2)2+1,又因为过点N(3,2),代入解析式即可求出a的值,从而得到解析式;
(2)用含有n 得代数式表示出P,Q坐标,求出PQ最小值,再证得△DPQ∽△OAB,根据相似三角形性质即可求得DQ的最小值.
试题解析:(1)设这个二次函数的关系式为y=a(x-2)2+1.
把x=3,y=2代入得a+1=2,∴a=1.
∴这个二次函数的关系式为y=(x-2)2+1.
(2)由题意知P(n,n2-4n+5),Q(n,-n-4).
∴PQ=n2-4n+5-(-n-4)=n2n+9=(n-)2. 
∴当n=时,PQ取得最小值,为
易证△DPQ∽△OAB,
,
∵一次函数y=-x-4的图象与x轴交于点A,与y轴交于点B,
∴OB=4,OA=3,AB==5
∴DQ=PQ=
∴当n=时,DQ取得最小值,为
考点:二次函数与一次函数综合.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,抛物线过点,且与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D的坐标为,连接CA,CB,CD.

(1)求证:
(2)是第一象限内抛物线上的一个动点,连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出点E的坐标;
②连接CP,当△CDP的面积最大时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;
(2)如果,是(1)中图象上的两点,且,请直接写出的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.

(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:,则小球距离地面的最大高度是
A.1米B.5米C.6米D.7米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是(  )
A.(﹣1,8) B.(1,8) C.(﹣1,2)D.(1,﹣4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(3+,y3)三点,则y1、y2、y3的大小关系正确的是(    )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2

查看答案和解析>>

同步练习册答案