精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,ADABADBC的延长线相交于点E.

(1)求证:AD是半圆O的切线;

(2)连结CD,求证:∠A=2∠CDE;

【答案】证明见解析

【解析】

(1)如图,连接OD,BD,

AB是⊙O的切线,∴ABBC,即∠ABC=90°

AB=AD,∴∠ABD=ADB

OB=OD,∴∠DBO=BDO,∴∠ABD+DBO=ADB+BDO

∴∠ADO=ABO=90°,AD是半圆O的切线.

(2)由(1)知,∠ADO=ABO=90°

∴∠A=360°–ADO–ABO–BOD=180°–BOD=DOC

AD是半圆O的切线,∴∠ODE=90°,∴∠ODC+CDE=90°

BC是⊙O的直径,∴∠ODC+BDO=90°,∴∠BDO=CDE

∵∠BDO=OBD,∴∠DOC=2BDO,∴∠DOC=2CDE

∴∠A=2CDE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax2+bx3x轴于点A(﹣30)、B10),在y轴上有一点E01),连接AE

1)求二次函数的表达式;

2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;

3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+mx+nx轴于点A﹣20)和点B,交y轴于点C02).

1)求抛物线的函数表达式;

2)若点M在抛物线上,且SAOM=2SBOC,求点M的坐标;

3)如图2,设点N是线段AC上的一动点,作DNx轴,交抛物线于点D,求线段DN长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与x轴交于A(10)B(40)两点,与y轴交于点C,且ABBC,求此抛物线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:

该社团2017年获奖学生人数占近五年获奖总人数的百分比为_____,补全折线统计图;

该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:

①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣

其中正确结论的个数是( )

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).

(1)求m的值和点D的坐标.

(2)求的值.

(3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动直线 ykx+2k0)与 y 轴交于点 F,与抛物线 y 相交于AB 两点,过点 AB 分别作 x 轴的垂线,垂足分别为点 CD,连接 CFDF,请你判断CDF 的形状,并说明理由.

查看答案和解析>>

同步练习册答案