精英家教网 > 初中数学 > 题目详情
如图,在半径为4的⊙O中,AB,CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,设DE=
a
(a>0)
,EM=x.
(1)用含x和a的代数式表示MC的长,并求证:x2-
64-a
•x+12=0

(2)当a=15,且EM>MC时,求sin∠EOM的值;
(3)根据图形写出EM的长的取值范围.试问:在弧DB上是否存在一点E,使EM的长是关于x的方精英家教网x2-
64-a
•x+12=0
的相等实数根?如果存在,求出sin∠EOM的值;如果不存在,请说明理由.
分析:(1)根据直径所对的圆周角是直角得到直角三角形CDE,再根据勾股定理求得CE的长,进一步求得MC的长.根据相交弦定理进行证明.
(2)根据(1)中的方程即可求得x的值,即可以求得EM,CM的长.此时会发现三角形EOM是等腰三角形,作其底边上的高,根据等腰三角形的三线合一和勾股定理求得其底边上的高,再进一步求得sin∠EOM的值;
(3)根据图形可知EM一定大于BM的长,即2,而小于AM的长,即6.首先根据方程有两个相等的实数根,利用△=0求得a的值,再进一步求得EM的长.根据EM,OE,OM的长,不难发现这是一个直角三角形,即可求得sin∠EOM的值.
解答:解:(1)∵CD是直径
∴∠CED=90度
在直角三角形CDE中,DE=
a
,CD=8
根据勾股定理,得CE=
64-a

∴MC=
64-a
-x
根据相交弦定理,得
AM•BM=CM•EM
即x(
64-a
-x)=6×2
x2-
64-a
•x+12=0


(2)当a=15时,根据(1)中的方程,有
x2-7x+12=0
解得x=3或x=4
又EM>MC,则
EM=4,MC=3
因为EM=EO=4,作EF⊥OB于F,则OF=1
根据勾股定理,得EF=
15

所以sin∠EOM=
15
4


(3)根据图形,显然2<x<6.
根据EM的长是关于x的方程x2-
64-a
•x+12=0
的相等实数根,则
△=64-a-48=0
∴a=16
把a=16代入方程,解得x=2
3

即EM=2
3

又∵OE=4,OM=2
∴sin∠EOM=
3
2
点评:综合运用了数形结合的知识.既要熟悉一元二次方程根的判别式,还要熟悉相交弦定理、勾股定理及其逆定理和锐角三角函数的定义.在计算的过程中能够根据线段的长发现特殊的三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在半径为R的圆中作一内接△ABC,使BC边上的高AD=h(定值),这样的三角形可作出无数个,但AB•AC为定值,其值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在半径为R的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是(  )
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在半径为2的⊙O中,弦AB的长为2
3
,则∠AOB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)如图,在半径为1的扇形AOB中,∠AOB=90°,点P是
AB
上的一个动点(不与点A、B重合),PC⊥OA,PD⊥OB,垂足分别为点C、D,点E、F、G、H分别是线段OD、PD、PC、OC的中点,EF与DG相交于点M,HG与EC相交于点N,联结MN.如果设OC=x,MN=y,那么y关于x的函数解析式及函数定义域为
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步练习册答案