精英家教网 > 初中数学 > 题目详情
(2005•吉林)如图①,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A、O、D三点,图②和图③是把一些这样的小正方形及其内部抛物线部分经过拼组得到的.

(1)a的值为______;
(2)图②中矩形EFGH的面积为______;
(3)图③中正方形PQRS的面积为______.
【答案】分析:(1)根据正方形的边长为5,可得出A,D的坐标分别是(-2.5,5),(2.5,5).可将A或D的坐标代入抛物线的解析式中即可得出a的值.
(2)看图②不难看出,E点到H点实际向右平移了3个正方形的边长,而F到E向上平移了2个正方形的边长.那么矩形的面积就是3×2×5×5=150.
(3)求正方形的面积就要求出边长,如果设PQ、QR分别于小正方形的边长交于Z、V两点,那么不难得出ZQ=VQ=PQ,可通过建立坐标系来求ZQ、VQ的长,以Q所在的抛物线的顶点为原点作坐标轴,可设出Q点的坐标,然后根据ZQ=VQ,来求出Q的坐标,进而求出VQ、ZQ和正方形的边长,也就可以求出正方形的面积.
解答:解:(1)根据题意得点D的坐标为(,5),把点D(,5)代入y=ax2得a=

(2)如图②,根据题意得正方形IJKL沿射线JU方向平行移动15个单位长度与正方形MNUT重合,
由平行移动的性质可知EH=15,同理可得EF=10,
∴S矩形EFGH=15×10=150;


(3)如图③,建立平面直角坐标系,
设Q点坐标为(m,m2),
其中m<0,由抛物线,正方形的对称性可得ZQ=VQ,
-m=5-m2
解得m1=,m2=(舍去),
∴点Q坐标为(-),
∴RQ=2[-(-)]=
∴S正方形PORS=RQ2=(2=
点评:本题主要考查了正方形的性质,图形的平移以及二次函数的综合应用,运用数形结合的方法求解是本题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•吉林)如图①,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A、O、D三点,图②和图③是把一些这样的小正方形及其内部抛物线部分经过拼组得到的.

(1)a的值为______;
(2)图②中矩形EFGH的面积为______;
(3)图③中正方形PQRS的面积为______.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•吉林)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为______;
(2)△MCB的面积为______.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•吉林)如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.
(1)求a的值;
(2)求图2中矩形EFGH的面积;
(3)求图3中正方形PQRS的面积.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•吉林)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•吉林)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为______;
(2)△MCB的面积为______.

查看答案和解析>>

同步练习册答案