【题目】如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2 ,点D为AC与反比例函数y= 的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为 .
【答案】﹣4或﹣8
【解析】解:如图所示,过C作CE⊥AB于E,
∵∠ABC=60°,BC=2 ,
∴Rt△CBE中,CE=3,
又∵AC=4,
∴△ABC的面积= AB×CE= ×4×3=6,
连接BD,OD,
∵直线BD将△ABC的面积分成1:2的两部分,
∴点D将线段AC分成1:2的两部分,
当AD:CD=1:2时,△ABD的面积= ×△ABC的面积=2,
∵AC∥OB,
∴△DOA的面积=△ABD的面积=2,
∴ |k|=2,即k=±4,
又∵k<0,
∴k=﹣4;
当AD:CD=2:1时,△ABD的面积= ×△ABC的面积=4,
∵AC∥OB,
∴△DOA的面积=△ABD的面积=4,
∴ |k|=4,即k=±8,
又∵k<0,
∴k=﹣8,
所以答案是:﹣4或﹣8.
科目:初中数学 来源: 题型:
【题目】直线y=kx+b与反比例函数y= (x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)
(1)求m的值;
(2)求直线AB的解析式;
(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,S△AMN= ,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O在直线MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=则∠BON=_______(用含有的式子表示);
(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变,若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b﹣c=2;②a= ;③ac=b﹣1;④ >0
其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有5张写着不同数字的卡片,请按要求完成下列问题:
若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______.
若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______.
若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.
(1)求证: = ;
(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;
(3)若MA=6 ,sin∠AMF= ,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2 , 并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3 , 并写出A3的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com