精英家教网 > 初中数学 > 题目详情

【题目】如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2 ,点D为AC与反比例函数y= 的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为

【答案】﹣4或﹣8
【解析】解:如图所示,过C作CE⊥AB于E,

∵∠ABC=60°,BC=2

∴Rt△CBE中,CE=3,

又∵AC=4,

∴△ABC的面积= AB×CE= ×4×3=6,

连接BD,OD,

∵直线BD将△ABC的面积分成1:2的两部分,

∴点D将线段AC分成1:2的两部分,

当AD:CD=1:2时,△ABD的面积= ×△ABC的面积=2,

∵AC∥OB,

∴△DOA的面积=△ABD的面积=2,

|k|=2,即k=±4,

又∵k<0,

∴k=﹣4;

当AD:CD=2:1时,△ABD的面积= ×△ABC的面积=4,

∵AC∥OB,

∴△DOA的面积=△ABD的面积=4,

|k|=4,即k=±8,

又∵k<0,

∴k=﹣8,

所以答案是:﹣4或﹣8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与反比例函数y= (x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)

(1)求m的值;
(2)求直线AB的解析式;
(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,SAMN= ,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O在直线MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b﹣c=2;②a= ;③ac=b﹣1;④ >0
其中正确的个数有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有5张写着不同数字的卡片,请按要求完成下列问题:

若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______

若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______

若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.

(1)求证: =
(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;
(3)若MA=6 ,sin∠AMF= ,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:

(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2 , 并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3 , 并写出A3的坐标.

查看答案和解析>>

同步练习册答案