精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).
(1)求此二次函数的表达式;
(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
分析:(1)抛物线的解析式中,二次项和一次项系数都含有相同的未知数,可先确定抛物线的对称轴,而AB的长已知,可据此确定点A、B的坐标;再根据已知点(2,3)可求出抛物线的解析式.
(2)首先求出点B、C、D三点坐标,此时发现△BDC恰好是直角三角形,且DC⊥BC,那么点D正好符合点P的要求;显然在直线BC下方还有一个符合条件的点P,可将点B视作顶角顶点、BD为腰作一个等腰三角形(此时可在直线BC下方作出一个与∠DBC相等的角),先确定第三个顶点的坐标,求出此点所在腰的直线解析式后联立抛物线即可求出另一点P.
(3)根据抛物线的对称性,不难确定点K的坐标.由题意,A、F都在x轴上,所以无论AF是边还是对角线,点G的纵坐标必为3或-3(与K相同或互为相反数),先代入抛物线确定出点G的坐标后,再根据A、K的坐标和平行四边形的特点确定点F的坐标.
解答:解:(1)抛物线的对称轴:x=-
b
2a
=-
-2a
2a
=1,且AB=4,则 A(-1,0)、B(3,0);
再代入点(2,3)后,可得:
a+2a+c=0
4a-4a+c=3
,解得
a=-1
c=3

∴二次函数的表达式:y=-x2+2x+3.

(2)由(1)知:y=-x2+2x+3=-(x-1)2+4,则 D(1,4);
BC2=18、CD2=2、BD2=20,∴BC2+CD2=BD2,即△BCD是直角三角形,且DC⊥BC.
∴∠BDC+∠DBC=90°,即点D符合点P的要求,P1(1,4).
延长DC至E,使得DC=CE,则△BDE是等腰三角形,且∠DBC=∠EBC,则直线BE与抛物线的交点也符合点P的要求(B点除外)
通过图示,不难看出 点D、E关于点C对称,则 E(-1,2),设直线BE:y=kx+b,则有:
3k+b=0
-k+b=2
,解得
k=-
1
2
b=
3
2

∴直线BE:y=-
1
2
x+
3
2
,联立抛物线的解析式后,得:
y=-
1
2
x+
3
2
y=-x2+2x+3
,解得
x1=3
y1=0
(舍)、
x2=-
1
2
y2=
7
4

∴P2(-
1
2
7
4
);
综上,存在符合条件的点P,且坐标为(1,4)、(-
1
2
7
4
).

(3)易知点K(2,3);
由题意,A、F都在x轴上,根据平行四边形的特点不难看出点G的纵坐标为3或-3;
当yG=3时,-x2+2x+3=3,解得 x=0或2,
∴G点坐标为(0,3),
此时点F的坐标为(-1-2,0)或(-1+2,0),即(-3,0)、(1,0);
当yG=-3时,-x2+2x+3=-3,解得 x=1±
7

∴G点坐标为(1+
7
,-3)或(1-
7
,-3),
此时点F的坐标为(4+
7
,0)、(4-
7
,0);
综上,有四个符合条件的点F,且坐标为(-3,0)、(1,0)、(4+
7
,0)、(4-
7
,0).
点评:此题主要考查的知识点有:利用待定系数法确定函数解析式、直角三角形与等腰三角形的判定和性质以及平行四边形的判定和性质;(2)题中,判断出△BCD的形状是解题的关键;最后一题需要分类进行讨论,以免出现漏解的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案